Page 1

Displaying 1 – 10 of 10

Showing per page

Effective computation of restoring force vector in finite element method

Martin Balazovjech, Ladislav Halada (2007)

Kybernetika

We introduce a new way of computation of time dependent partial differential equations using hybrid method FEM in space and FDM in time domain and explicit computational scheme. The key idea is quick transformation of standard basis functions into new simple basis functions. This new way is used for better computational efficiency. We explain this way of computation on an example of elastodynamic equation using quadrilateral elements. However, the method can be used for more types of elements and...

Efficient application of e-invariants in finite element method for an elastodynamic equation

Martin Balazovjech, Ladislav Halada (2013)

Kybernetika

We introduce a new efficient way of computation of partial differential equations using a hybrid method composed from FEM in space and FDM in time domain. The overall computational scheme is explicit in time. The key idea of the suggested way is based on a transformation of standard basis functions into new basis functions. The results of this matrix transformation are e-invariants (effective invariants) with such suitable properties which save the number of arithmetical operations needed for a...

Error estimates of an iterative method for a quasistatic elastic-visco-plastic problem

Ioan Rosca, Mircea Sofonea (1994)

Applications of Mathematics

This paper deals with an initial and boundary value problem describing the quasistatic evolution of rate-type viscoplastic materials. Using a fixed point property, an iterative method in the study of this problem is proposed. A concrete algorithm as well as some numerical results in the one-dimensional case are also presented.

Error estimation and adaptivity for nonlinear FE analysis

Antonio Huerta, Antonio Rodríguez-Ferran, Pedro Díez (2002)

International Journal of Applied Mathematics and Computer Science

An adaptive strategy for nonlinear finite-element analysis, based on the combination of error estimation and h-remeshing, is presented. Its two main ingredients are a residual-type error estimator and an unstructured quadrilateral mesh generator. The error estimator is based on simple local computations over the elements and the so-called patches. In contrast to other residual estimators, no flux splitting is required. The adaptive strategy is illustrated by means of a complex nonlinear problem:...

External approximation of first order variational problems via W-1,p estimates

Cesare Davini, Roberto Paroni (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Here we present an approximation method for a rather broad class of first order variational problems in spaces of piece-wise constant functions over triangulations of the base domain. The convergence of the method is based on an inequality involving W - 1 , p norms obtained by Nečas and on the general framework of Γ-convergence theory.

Currently displaying 1 – 10 of 10

Page 1