Page 1

Displaying 1 – 4 of 4

Showing per page

Weak solvability and numerical analysis of a class of time-fractional hemivariational inequalities with application to frictional contact problems

Mustapha Bouallala (2024)

Applications of Mathematics

We investigate a generalized class of fractional hemivariational inequalities involving the time-fractional aspect. The existence result is established by employing the Rothe method in conjunction with the surjectivity of multivalued pseudomonotone operators and the properties of the Clarke generalized gradient. We are also exploring a numerical approach to address the problem, utilizing both spatially semi-discrete and fully discrete finite elements, along with a discrete approximation of the fractional...

Weight minimization of an elastic plate with a unilateral inner obstacle by a mixed finite element method

Ivan Hlaváček (1994)

Applications of Mathematics

Unilateral deflection problem of a clamped plate above a rigid inner obstacle is considered. The variable thickness of the plate is to be optimized to reach minimal weight under some constraints for maximal stresses. Since the constraints are expressed in terms of the bending moments only, Herrmann-Hellan finite element scheme is employed. The existence of an optimal thickness is proved and some convergence analysis for approximate penalized optimal design problem is presented.

Weight minimization of elastic bodies weakly supporting tension. I. Domains with one curved side

Ivan Hlaváček, Michal Křížek (1992)

Applications of Mathematics

Shape optimization of a two-dimensional elastic body is considered, provided the material is weakly supporting tension. The problem generalizes that of a masonry dam subjected to its own weight and to the hydrostatic presure. Existence of an optimal shape is proved. Using a penalty method and finite element technique, approximate solutions are proposed and their convergence is analyzed.

Weight minimization of elastic bodies weakly supporting tension. II. Domains with two curved sides

Ivan Hlaváček, Michal Křížek (1992)

Applications of Mathematics

Extending the results of the previous paper [1], the authors consider elastic bodies with two design variables, i.e. "curved trapezoids" with two curved variable sides. The left side is loaded by a hydrostatic pressure. Approximations of the boundary are defined by cubic Hermite splines and piecewise linear finite elements are used for the displacements. Both existence and some convergence analysis is presented for approximate penalized optimal design problems.

Currently displaying 1 – 4 of 4

Page 1