Cholesky-like factorizations of skew-symmetric matrices.
In linear fracture mechanics, it is common to use the local Irwin criterion or the equivalent global Griffith criterion for decision whether the crack is propagating or not. In both cases, a quantity called the stress intensity factor can be used. In this paper, four methods are compared to calculate the stress intensity factor numerically; namely by using the stress values, the shape of a crack, nodal reactions and the global energetic method. The most accurate global energetic method is used to...
The paper deals with the approximation of contact problems of two elastic bodies by finite element method. Using piecewise linear finite elements, some error estimates are derived, assuming that the exact solution is sufficiently smooth. If the solution is not regular, the convergence itself is proven. This analysis is given for two types of contact problems: with a bounded contact zone and with enlarging contact zone.
The problem of a unilateral contact between elastic bodies with an apriori bounded contact zone is formulated in terms of stresses via the principle of complementary energy. Approximations are defined by means of self-equilibriated triangular block-elements and an -error estimate is proven provided the exact solution is regular enough.
If the material of the bodies is elastic perfectly plastic, obeying the Hencky's law, the formulation in terms of stresses is more suitable than that in displacements. The Haar-Kármán principle is first extended to the case of a unilateral contact between two bodies without friction. Approximations are proposed by means of piecewise constant triangular finite elements. Convergence of the method is proved for any regular family of triangulations.
The goal of the paper is the study of the contact problem of two elastic bodies which is applicable to the solution of displacements and stresses of the earth continuum and the tunnel wall. In this first part the variational formulation of the continuous and discrete model is stated. The second part covers the proof of convergence of finite element method to the solution of continuous problem while in the third part some practical applications are illustrated.
In addition to the optimal design and worst scenario problems formulated in a previous paper [3], approximate optimization problems are introduced, making use of the finite element method. The solvability of the approximate problems is proved on the basis of a general theorem of [3]. When the mesh size tends to zero, a subsequence of any sequence of approximate solutions converges uniformly to a solution of the continuous problem.
In this paper, the convergence of a Neumann-Dirichlet algorithm to approximate Coulomb's contact problem between two elastic bodies is proved in a continuous setting. In this algorithm, the natural interface between the two bodies is retained as a decomposition zone.
An equilibrium triangular block-element, proposed by Watwood and Hartz, is subjected to an analysis and its approximability property is proved. If the solution is regular enough, a quasi-optimal error estimate follows for the dual approximation to the mixed boundary value problem of elasticity (based on Castigliano's principle). The convergence is proved even in a general case, when the solution is not regular.
We formulate a finite element method for the computation of solutions to an anisotropic phase-field model for a binary alloy. Convergence is proved in the -norm. The convergence result holds for anisotropy below a certain threshold value. We present some numerical experiments verifying the theoretical results. For anisotropy below the threshold value we observe optimal order convergence, whereas in the case where the anisotropy is strong the numerical solution to the phase-field equation does not...
The problem of modeling acoustic waves scattered by an object with Neumann boundary condition is considered. The boundary condition is taken into account by means of the fictitious domain method, yielding a first order in time mixed variational formulation for the problem. The resulting system is discretized with two families of mixed finite elements that are compatible with mass lumping. We present numerical results illustrating that the Neumann boundary condition on the object is not always correctly...
The problem of modeling acoustic waves scattered by an object with Neumann boundary condition is considered. The boundary condition is taken into account by means of the fictitious domain method, yielding a first order in time mixed variational formulation for the problem. The resulting system is discretized with two families of mixed finite elements that are compatible with mass lumping. We present numerical results illustrating that the Neumann boundary condition on the object is not always...