Page 1

Displaying 1 – 6 of 6

Showing per page

New methods in collision of bodies analysis

Němec, Ivan, Vala, Jiří, Štekbauer, Hynek, Jedlička, Michal, Burkart, Daniel (2023)

Programs and Algorithms of Numerical Mathematics

The widely used method for solution of impacts of bodies, called the penalty method, is based on the contact force proportional to the length of the interpenetration of bodies. This method is regarded as unsatisfactory by the authors of this contribution, because of an inaccurate fulfillment of the energy conservation law and violation of the natural demand of impenetrability of bodies. Two non-traditional methods for the solution of impacts of bodies satisfy these demands exactly, or approximately,...

Non-local damage modelling of quasi-brittle composites

Jiří Vala, Vladislav Kozák (2021)

Applications of Mathematics

Most building materials can be characterized as quasi-brittle composites with a cementitious matrix, reinforced by some stiffening particles or elements. Their massive exploitation motivates the development of numerical modelling and simulation of behaviour of such material class under mechanical, thermal, etc. loads, including the evaluation of the risk of initiation and development of micro- and macro-fracture. This paper demonstrates the possibility of certain deterministic prediction, applying...

Numerical analysis of a frictionless viscoelastic piezoelectric contact problem

Mikael Barboteu, Jose Ramon Fernández, Youssef Ouafik (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

In this work, we consider the quasistatic frictionless contact problem between a viscoelastic piezoelectric body and a deformable obstacle. The linear electro-viscoelastic constitutive law is employed to model the piezoelectric material and the normal compliance condition is used to model the contact. The variational formulation is derived in a form of a coupled system for the displacement and electric potential fields. An existence and uniqueness result is recalled. Then, a fully discrete scheme...

Numerical analysis of history-dependent quasivariational inequalities with applications in contact mechanics

Kamran Kazmi, Mikael Barboteu, Weimin Han, Mircea Sofonea (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

A new class of history-dependent quasivariational inequalities was recently studied in [M. Sofonea and A. Matei, History-dependent quasivariational inequalities arising in contact mechanics. Eur. J. Appl. Math. 22 (2011) 471–491]. Existence, uniqueness and regularity results were proved and used in the study of several mathematical models which describe the contact between a deformable body and an obstacle. The aim of this paper is to provide numerical analysis of the quasivariational inequalities...

Numerical analysis of the quasistatic thermoviscoelastic thermistor problem

José R. Fernández (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

In this work, the quasistatic thermoviscoelastic thermistor problem is considered. The thermistor model describes the combination of the effects due to the heat, electrical current conduction and Joule's heat generation. The variational formulation leads to a coupled system of nonlinear variational equations for which the existence of a weak solution is recalled. Then, a fully discrete algorithm is introduced based on the finite element method to approximate the spatial variable and an Euler scheme...

Currently displaying 1 – 6 of 6

Page 1