Calcul des charges limites d'une structure élastoplastique en contraintes planes
The problem of a unilateral contact between elastic bodies with an apriori bounded contact zone is formulated in terms of stresses via the principle of complementary energy. Approximations are defined by means of self-equilibriated triangular block-elements and an -error estimate is proven provided the exact solution is regular enough.
An equilibrium triangular block-element, proposed by Watwood and Hartz, is subjected to an analysis and its approximability property is proved. If the solution is regular enough, a quasi-optimal error estimate follows for the dual approximation to the mixed boundary value problem of elasticity (based on Castigliano's principle). The convergence is proved even in a general case, when the solution is not regular.
Elastic two-layer curved composite beam with partial shear interaction is considered. It is assumed that each curved layer separately follows the Euler-Bernoulli hypothesis and the load slip relation for the flexible shear connection is a linear relationship. The curved composite beam at one of the end cross sections is fixed and the other end cross section is subjected by a concentrated radial load. Two cases are considered. In the first case the loaded end cross section is closed by a rigid plate...
Dual finite element analysis of the contact problem of two elastic bodies with an enlarging contact zone is presented. Approximations of the solution are defined on two types of triangulations by piecewise constant stress fields. Convergence is proved in both cases.
This paper presents a derivation of the Rayleigh- Betti reciprocity relation for layered curved composite beams with interlayer slip. The principle of minimum of potential energy is also formulated for two-layer curved composite beams and its applications are illustrated by numerical examples. The solution of the presented problems are obtained by the Ritz method. The applications of the Rayleigh-Betti reciprocity relation proven are illustrated by some examples.
We prove error estimates for the ultra weak variational formulation (UWVF) in 3D linear elasticity. We show that the UWVF of Navier’s equation can be derived as an upwind discontinuous Galerkin method. Using this observation, error estimates are investigated applying techniques from the theory of discontinuous Galerkin methods. In particular, we derive a basic error estimate for the UWVF in a discontinuous Galerkin type norm and then an error estimate in the L2(Ω) norm in terms of the best approximation...
We prove error estimates for the ultra weak variational formulation (UWVF) in 3D linear elasticity. We show that the UWVF of Navier’s equation can be derived as an upwind discontinuous Galerkin method. Using this observation, error estimates are investigated applying techniques from the theory of discontinuous Galerkin methods. In particular, we derive a basic error estimate for the UWVF in a discontinuous Galerkin type norm and then an error estimate...
Nell'articolo si tratta il problema dell'adattamento in dinamica elasto-plastica. La trattazione è fondata sulle seguenti basi: si adotta un legame costitutivo elasto-plastico di notevole generalità, basato su di una formulazione a variabili interne in grado di descrivere un comportamento incrudente genericamente non lineare; si fa riferimento ad un modello strutturale discreto, descritto mediante variabili generalizzate. I contributi presentati si possono così riassumere: si estendono risultati...