Page 1

Displaying 1 – 15 of 15

Showing per page

Global attractor for Navier-Stokes equations in cylindrical domains

Bernard Nowakowski, Wojciech M. Zajączkowski (2009)

Applicationes Mathematicae

Global and regular solutions of the Navier-Stokes system in cylindrical domains have already been obtained under the assumption of smallness of (1) the derivative of the velocity field with respect to the variable along the axis of cylinder, (2) the derivative of force field with respect to the variable along the axis of the cylinder and (3) the projection of the force field on the axis of the cylinder restricted to the part of the boundary perpendicular to the axis of the cylinder. With the same...

Global attractor for the Navier-Stokes equations in a cylindrical pipe

Piotr Kacprzyk (2010)

Annales Polonici Mathematici

Global existence of regular special solutions to the Navier-Stokes equations describing the motion of an incompressible viscous fluid in a cylindrical pipe has already been shown. In this paper we prove the existence of the global attractor for the Navier-Stokes equations and convergence of the solution to a stationary solution.

Global existence for the inflow-outflow problem for the Navier-Stokes equations in a cylinder

Piotr Kacprzyk (2009)

Applicationes Mathematicae

Global existence of regular solutions to the Navier-Stokes equations describing the motion of an incompressible viscous fluid in a cylindrical pipe with large inflow and outflow is shown. To prove the long time existence we need smallness of derivatives, with respect to the variable along the axis of the cylinder, of the external force and of the initial velocity in L₂-norms. Moreover, we need smallness of derivatives of inflow and outflow with respect to tangent directions to the boundary and with...

Global existence of axially symmetric solutions to Navier-Stokes equations with large angular component of velocity

Wojciech M. Zajączkowski (2004)

Colloquium Mathematicae

Global existence of axially symmetric solutions to the Navier-Stokes equations in a cylinder with the axis of symmetry removed is proved. The solutions satisfy the ideal slip conditions on the boundary. We underline that there is no restriction on the angular component of velocity. We obtain two kinds of existence results. First, under assumptions necessary for the existence of weak solutions, we prove that the velocity belongs to W 4 / 3 2 , 1 ( Ω × ( 0 , T ) ) , so it satisfies the Serrin condition. Next, increasing regularity...

Global existence of solutions for incompressible magnetohydrodynamic equations

Wisam Alame, W. M. Zajączkowski (2004)

Applicationes Mathematicae

Global-in-time existence of solutions for incompressible magnetohydrodynamic fluid equations in a bounded domain Ω ⊂ ℝ³ with the boundary slip conditions is proved. The proof is based on the potential method. The existence is proved in a class of functions such that the velocity and the magnetic field belong to W p 2 , 1 ( Ω × ( 0 , T ) ) and the pressure q satisfies q L p ( Ω × ( 0 , T ) ) for p ≥ 7/3.

Global existence of solutions to Navier-Stokes equations in cylindrical domains

Bernard Nowakowski, Wojciech M. Zajączkowski (2009)

Applicationes Mathematicae

We prove the existence of global and regular solutions to the Navier-Stokes equations in cylindrical type domains under boundary slip conditions, where coordinates are chosen so that the x₃-axis is parallel to the axis of the cylinder. Regular solutions have already been obtained on the interval [0,T], where T > 0 is large, on the assumption that the L₂-norms of the third component of the force field, of derivatives of the force field, and of the velocity field with respect to the direction of...

Global regular nonstationary flow for the Navier-Stokes equations in a cylindrical pipe

Piotr Kacprzyk (2007)

Applicationes Mathematicae

Global existence of regular solutions to the Navier-Stokes equations describing the motion of an incompressible viscous fluid in a cylindrical pipe with large inflow and outflow is shown. Global existence is proved in two steps. First, by the Leray-Schauder fixed point theorem we prove local existence with large existence time. Next, the local solution is prolonged step by step. The existence is proved without any restrictions on the magnitudes of the inflow, outflow, external force and initial...

Global regular solutions to the Navier-Stokes equations in a cylinder

Wojciech M. Zajączkowski (2006)

Banach Center Publications

The existence and uniqueness of solutions to the Navier-Stokes equations in a cylinder Ω and with boundary slip conditions is proved. Assuming that the azimuthal derivative of cylindrical coordinates and azimuthal coordinate of the initial velocity and the external force are sufficiently small we prove long time existence of regular solutions such that the velocity belongs to W 5 / 2 2 , 1 ( Ω × ( 0 , T ) ) and the gradient of the pressure to L 5 / 2 ( Ω × ( 0 , T ) ) . We prove the existence of solutions without any restrictions on the lengths of the...

Global regularity for the 3D MHD system with damping

Zujin Zhang, Xian Yang (2016)

Colloquium Mathematicae

We study the Cauchy problem for the 3D MHD system with damping terms ε | u | α - 1 u and δ | b | β - 1 b (ε, δ > 0 and α, β ≥ 1), and show that the strong solution exists globally for any α, β > 3. This improves the previous results significantly.

Global solutions, structure of initial data and the Navier-Stokes equations

Piotr Bogusław Mucha (2008)

Banach Center Publications

In this note we present a proof of existence of global in time regular (unique) solutions to the Navier-Stokes equations in an arbitrary three dimensional domain with a general boundary condition. The only restriction is that the L₂-norm of the initial datum is required to be sufficiently small. The magnitude of the rest of the norm is not restricted. Our considerations show the essential role played by the energy bound in proving global in time results for the Navier-Stokes equations.

Currently displaying 1 – 15 of 15

Page 1