Page 1

Displaying 1 – 4 of 4

Showing per page

Weighted L² and L q approaches to fluid flow past a rotating body

R. Farwig, S. Kračmar, M. Krbec, Š. Nečasová, P. Penel (2009)

Banach Center Publications

Consider the flow of a viscous, incompressible fluid past a rotating obstacle with velocity at infinity parallel to the axis of rotation. After a coordinate transform in order to reduce the problem to a Navier-Stokes system on a fixed exterior domain and a subsequent linearization we are led to a modified Oseen system with two additional terms one of which is not subordinate to the Laplacean. In this paper we describe two different approaches to this problem in the whole space case. One of them...

Well-posedness for density-dependent incompressible fluids with non-Lipschitz velocity

Boris Haspot (2012)

Annales de l’institut Fourier

This paper is dedicated to the study of the initial value problem for density dependent incompressible viscous fluids in N with N 2 . We address the question of well-posedness for large and small initial data having critical Besov regularity in functional spaces as close as possible to the ones imposed in the incompressible Navier Stokes system by Cannone, Meyer and Planchon (where u 0 B p , r N p - 1 with 1 p < + , 1 r + ). This improves the classical analysis where u 0 is considered belonging in B p , 1 N p - 1 such that the velocity u remains...

Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid

Patricio Cumsille, Takéo Takahashi (2008)

Czechoslovak Mathematical Journal

In this paper, we consider the interaction between a rigid body and an incompressible, homogeneous, viscous fluid. This fluid-solid system is assumed to fill the whole space d , d = 2 or 3 . The equations for the fluid are the classical Navier-Stokes equations whereas the motion of the rigid body is governed by the standard conservation laws of linear and angular momentum. The time variation of the fluid domain (due to the motion of the rigid body) is not known a priori, so we deal with a free boundary...

Currently displaying 1 – 4 of 4

Page 1