-theory of the Navier-Stokes flow in the exterior of a moving or rotating obstacle.
We consider the time-periodic Oseen flow around a rotating body in ℝ³. We prove a priori estimates in -spaces of weak solutions for the whole space problem under the assumption that the right-hand side has the divergence form. After a time-dependent change of coordinates the problem is reduced to a stationary Oseen equation with the additional term -(ω ∧ x)·∇u + ω ∧ u in the equation of momentum where ω denotes the angular velocity. We prove the existence of generalized weak solutions in -space...
For robust discretizations of the Navier-Stokes equations with small viscosity, standard Galerkin schemes have to be augmented by stabilization terms due to the indefinite convective terms and due to a possible lost of a discrete inf-sup condition. For optimal control problems for fluids such stabilization have in general an undesired effect in the sense that optimization and discretization do not commute. This is the case for the combination of streamline upwind Petrov-Galerkin (SUPG) and pressure...