Page 1

Displaying 1 – 11 of 11

Showing per page

Maximal regularity and viscous incompressible flows with free interface

Senjo Shimizu (2008)

Banach Center Publications

We consider a free interface problem for the Navier-Stokes equations. We obtain local in time unique existence of solutions to this problem for any initial data and external forces, and global in time unique existence of solutions for sufficiently small initial data. Thanks to global in time L p - L q maximal regularity of the linearized problem, we can prove a global in time existence and uniqueness theorem by the contraction mapping principle.

More pressure in the finite element discretization of the Stokes problem

Christine Bernardi, Frédéric Hecht (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

For the Stokes problem in a two- or three-dimensional bounded domain, we propose a new mixed finite element discretization which relies on a nonconforming approximation of the velocity and a more accurate approximation of the pressure. We prove that the velocity and pressure discrete spaces are compatible, in the sense that they satisfy an inf-sup condition of Babuška and Brezzi type, and we derive some error estimates.

Mortar finite element discretization of a model coupling Darcy and Stokes equations

Christine Bernardi, Tomás Chacón Rebollo, Frédéric Hecht, Zoubida Mghazli (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

As a first draft of a model for a river flowing on a homogeneous porous ground, we consider a system where the Darcy and Stokes equations are coupled via appropriate matching conditions on the interface. We propose a discretization of this problem which combines the mortar method with standard finite elements, in order to handle separately the flow inside and outside the porous medium. We prove a priori and a posteriori error estimates for the resulting discrete problem. Some numerical experiments...

Multimodels for incompressible flows : iterative solutions for the Navier-Stokes / Oseen coupling

L. Fatone, P. Gervasio, A. Quarteroni (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In a recent paper [4] we have proposed and analysed a suitable mathematical model which describes the coupling of the Navier-Stokes with the Oseen equations. In this paper we propose a numerical solution of the coupled problem by subdomain splitting. After a preliminary analysis, we prove a convergence result for an iterative algorithm that alternates the solution of the Navier-Stokes problem to the one of the Oseen problem.

Multimodels for incompressible flows: iterative solutions for the Navier-Stokes/Oseen coupling

L. Fatone, P. Gervasio, A. Quarteroni (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In a recent paper [4] we have proposed and analysed a suitable mathematical model which describes the coupling of the Navier-Stokes with the Oseen equations. In this paper we propose a numerical solution of the coupled problem by subdomain splitting. After a preliminary analysis, we prove a convergence result for an iterative algorithm that alternates the solution of the Navier-Stokes problem to the one of the Oseen problem.

Multi-parameter asymptotic error resolution of the mixed finite element method for the Stokes problem

Aihui Zhou (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, a multi-parameter error resolution technique is applied into a mixed finite element method for the Stokes problem. By using this technique and establishing a multi-parameter asymptotic error expansion for the mixed finite element method, an approximation of higher accuracy is obtained by multi-processor computers in parallel.

Currently displaying 1 – 11 of 11

Page 1