The search session has expired. Please query the service again.
We consider a free interface problem for the Navier-Stokes equations. We obtain local in time unique existence of solutions to this problem for any initial data and external forces, and global in time unique existence of solutions for sufficiently small initial data. Thanks to global in time maximal regularity of the linearized problem, we can prove a global in time existence and uniqueness theorem by the contraction mapping principle.
For the Stokes problem in a two- or three-dimensional
bounded domain, we propose a new mixed finite element discretization which relies on
a nonconforming approximation of the velocity and a more accurate approximation of the
pressure. We prove that the velocity and pressure discrete spaces are compatible, in the
sense that they satisfy an inf-sup condition of Babuška and Brezzi type, and we
derive some error estimates.
As a first draft of a model for a river flowing on a homogeneous porous ground, we consider a system where the Darcy and Stokes equations are coupled via appropriate matching conditions on the interface. We propose a discretization of this problem which combines the mortar method with standard finite elements, in order to handle separately the flow inside and outside the porous medium. We prove a priori and a posteriori error estimates for the resulting discrete problem. Some numerical experiments...
In a recent paper [4] we have proposed and analysed a suitable mathematical model which describes the coupling of the Navier-Stokes with the Oseen equations. In this paper we propose a numerical solution of the coupled problem by subdomain splitting. After a preliminary analysis, we prove a convergence result for an iterative algorithm that alternates the solution of the Navier-Stokes problem to the one of the Oseen problem.
In a recent paper [4] we have proposed and analysed
a suitable mathematical model
which describes the coupling of the Navier-Stokes with the
Oseen equations.
In this paper we propose a numerical solution of the coupled
problem by subdomain splitting.
After a preliminary analysis, we prove a convergence result for
an iterative algorithm that alternates the solution of the Navier-Stokes
problem to the one of the Oseen problem.
In this paper, a multi-parameter error resolution
technique is applied into a mixed finite element method for the
Stokes problem. By using this technique and establishing a multi-parameter
asymptotic error expansion for the mixed finite element method, an approximation of higher
accuracy is obtained by multi-processor computers in parallel.
Currently displaying 1 –
11 of
11