Displaying 641 – 660 of 1082

Showing per page

On the conditional regularity of the Navier-Stokes and related equations

Dongho Chae (2006)

Banach Center Publications

We present regularity conditions for a solution to the 3D Navier-Stokes equations, the 3D Euler equations and the 2D quasigeostrophic equations, considering the vorticity directions together with the vorticity magnitude. It is found that the regularity of the vorticity direction fields is most naturally measured in terms of norms of the Triebel-Lizorkin type.

On the domain geometry dependence of the LBB condition

Evgenii V. Chizhonkov, Maxim A. Olshanskii (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The LBB condition is well-known to guarantee the stability of a finite element (FE) velocity - pressure pair in incompressible flow calculations. To ensure the condition to be satisfied a certain constant should be positive and mesh-independent. The paper studies the dependence of the LBB condition on the domain geometry. For model domains such as strips and rings the substantial dependence of this constant on geometry aspect ratios is observed. In domains with highly anisotropic substructures...

On the existence and regularity of the solutions to the incompressible Navier-Stokes equations in presence of mass diffusion

Rodolfo Salvi (2008)

Banach Center Publications

This paper is devoted to the study of the incompressible Navier-Stokes equations with mass diffusion in a bounded domain in R³ with C³ boundary. We prove the existence of weak solutions, in the large, and the behavior of the solutions as the diffusion parameter λ → 0. Moreover, the existence of L²-strong solution, in the small, and in the large for small data, is proved. Asymptotic regularity (the regularity after a finite period) of a weak solution is studied. Finally, using the Dore-Venni theory,...

On the existence for the Cauchy-Neumann problem for the Stokes system in the L p -framework

Piotr Mucha, Wojciech Zajączkowski (2000)

Studia Mathematica

The existence for the Cauchy-Neumann problem for the Stokes system in a bounded domain Ω 3 is proved in a class such that the velocity belongs to W r 2 , 1 ( Ω × ( 0 , T ) ) , where r > 3. The proof is divided into three steps. First, the existence of solutions is proved in a half-space for vanishing initial data by applying the Marcinkiewicz multiplier theorem. Next, we prove the existence of weak solutions in a bounded domain and then we regularize them. Finally, the problem with nonvanishing initial data is considered....

On the existence of pullback attractor for a two-dimensional shear flow with Tresca's boundary condition

Mahdi Boukrouche, Grzegorz Łukaszewicz (2008)

Banach Center Publications

We consider a two-dimensional Navier-Stokes shear flow with time dependent boundary driving and subject to Tresca law. We establish the existence of a unique global in time solution and then, using a recent method based on the concept of the Kuratowski measure of noncompactness of a bounded set, we prove the existence of the pullback attractor for the associated cocycle. This research is motivated by a problem from lubrication theory.

On the existence of solutions for the nonstationary Stokes system with slip boundary conditions in general Sobolev-Slobodetskii and Besov spaces

Wisam Alame (2005)

Banach Center Publications

We prove the existence of solutions to the evolutionary Stokes system in a bounded domain Ω ⊂ ℝ³. The main result shows that the velocity belongs either to W p 2 s + 2 , s + 1 ( Ω T ) or to B p , q 2 s + 2 , s + 1 ( Ω T ) with p > 3 and s ∈ ℝ₊ ∪ 0. The proof is divided into two steps. First the existence in W p 2 k + 2 , k + 1 for k ∈ ℕ is proved. Next applying interpolation theory the existence in Besov spaces in a half space is shown. Finally the technique of regularizers implies the existence in a bounded domain. The result is generalized to the spaces W p 2 s , s ( Ω T ) and B p , q 2 s , s with...

On the existence of steady-state solutions to the Navier-Stokes system for large fluxes

Antonio Russo, Giulio Starita (2008)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

In this paper we deal with the stationary Navier-Stokes problem in a domain Ω with compact Lipschitz boundary Ω and datum a in Lebesgue spaces. We prove existence of a solution for arbitrary values of the fluxes through the connected components of Ω , with possible countable exceptional set, provided a is the sum of the gradient of a harmonic function and a sufficiently small field, with zero total flux for Ω bounded.

On the exterior problem in 2D for stationary flows of fluids with shear dependent viscosity

Michael Bildhauer, Martin Fuchs (2012)

Commentationes Mathematicae Universitatis Carolinae

On the complement of the unit disk B we consider solutions of the equations describing the stationary flow of an incompressible fluid with shear dependent viscosity. We show that the velocity field u is equal to zero provided u | B = 0 and lim | x | | x | 1 / 3 | u ( x ) | = 0 uniformly. For slow flows the latter condition can be replaced by lim | x | | u ( x ) | = 0 uniformly. In particular, these results hold for the classical Navier-Stokes case.

On the Fattorini criterion for approximate controllability and stabilizability of parabolic systems

Mehdi Badra, Takéo Takahashi (2014)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we consider the well-known Fattorini’s criterion for approximate controllability of infinite dimensional linear systems of type y′ = Ay + Bu. We precise the result proved by Fattorini in [H.O. Fattorini, SIAM J. Control 4 (1966) 686–694.] for bounded input B, in the case where B can be unbounded or in the case of finite-dimensional controls. More precisely, we prove that if Fattorini’s criterion is satisfied and if the set of geometric multiplicities of A is bounded then approximate...

Currently displaying 641 – 660 of 1082