Non dérivation des équations de Prandtl
Two-dimensional inviscid channel flow of an incompressible fluid is considered. It is shown that if the flow is steady and features no horizontal stagnation, then the flow must necessarily be a parallel shear flow.
We consider supersonic compressible vortex sheets for the isentropic Euler equations of gas dynamics in two space dimensions. The problem is a free boundary nonlinear hyperbolic problem with two main difficulties: the free boundary is characteristic, and the so-called Lopatinskii condition holds only in a weak sense, which yields losses of derivatives. Nevertheless, we prove the local existence of such piecewise smooth solutions to the Euler equations. Since the a priori estimates for the linearized...
This paper considers the effect of a perturbed wall in regard to the classical Benard convection problem in which the lower rigid surface is of the form , s=ε r, in axisymmetric cylindrical polar coordinates (r,ϕ,z). The boundary conditions at s=0 for the linear amplitude equation are found and it is shown that these conditions are different from those which apply to the nonlinear problem investigated by Brown and Stewartson [1], representing the distribution of convection cells near the center....