Shear layer solutions of incompressible MHD and dynamo effect
The stability or instability of a few basic flows was conjectured, debated, and sometimes proved in the nineteenth century. Motivations varied from turbulence observed in real flows to permanence expected in hydrodynamic theories of matter. Contemporary mathematics often failed to provide rigorous answers, and personal intuitions sometimes gave wrong results. Yet some of the basic ideas and methods of the modern theory of hydrodynamic instability occurred to the elite of British and German mathematical...
We prove the linear and non-linear stability of oscillating Ekman boundary layers for rotating fluids in the so-called ill-prepared case under a spectral hypothesis. Here, we deal with the case where the viscosity and the Rossby number are both equal to . This study generalizes the study of [23] where a smallness condition was imposed and the study of [26] where the well-prepared case was treated.
Most of the paper deals with the application of the moving plane method to different questions concerning stationary accumulations of isentropic gases. The first part compares the concepts of stationarity arising from the points of view of dynamics and the calculus of variations. Then certain stationary solutions are shown to be unstable. Finally, using the moving plane method, a short proof of the existence of energy-minimizing gas balls is given.
We consider plasma tearing mode instabilities when the resistivity depends on a flux function (ψ), for the plane slab model. This problem, represented by the MHD equations, is studied as a bifurcation problem. For so doing, it is written in the form (I(.)-T(S,.)) = 0, where T(S,.) is a compact operator in a suitable space and S is the bifurcation parameter. In this work, the resistivity is not assumed to be a given quantity (as usually done in previous papers, see [1,2,5,7,8,9,10], but it depends...
In questo lavoro si studia la instabilità gravitazionale di un fluido comprimibile, elettroconduttore, descritto dalle equazioni della magnetofluidodinamica in presenza delle correnti di Hall e di ion slip. Si determina la condizione per la instabilità relativa ad una classe di perturbazioni assialsimmetriche.