Displaying 61 – 80 of 102

Showing per page

Numerical analysis of Eulerian multi-fluid models in the context of kinetic formulations for dilute evaporating sprays

Frédérique Laurent (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

The purpose of this article is the analysis and the development of Eulerian multi-fluid models to describe the evolution of the mass density of evaporating liquid sprays. First, the classical multi-fluid model developed in [Laurent and Massot, Combust. Theor. Model.5 (2001) 537–572] is analyzed in the framework of an unsteady configuration without dynamical nor heating effects, where the evaporation process is isolated, since it is a key issue. The classical multi-fluid method consists then in...

Numerical approximation of the inviscid 3D primitive equations in a limited domain

Qingshan Chen, Ming-Cheng Shiue, Roger Temam, Joseph Tribbia (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

A new set of nonlocal boundary conditions is proposed for the higher modes of the 3D inviscid primitive equations. Numerical schemes using the splitting-up method are proposed for these modes. Numerical simulations of the full nonlinear primitive equations are performed on a nested set of domains, and the results are discussed.

Numerical approximation of the inviscid 3D primitive equations in a limited domain

Qingshan Chen, Ming-Cheng Shiue, Roger Temam, Joseph Tribbia (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

A new set of nonlocal boundary conditions is proposed for the higher modes of the 3D inviscid primitive equations. Numerical schemes using the splitting-up method are proposed for these modes. Numerical simulations of the full nonlinear primitive equations are performed on a nested set of domains, and the results are discussed.

On the importance of solid deformations in convection-dominated liquid/solid phase change of pure materials

Daniela Mansutti, Edoardo Bucchignani (2011)

Applications of Mathematics

We analyse the effect of the mechanical response of the solid phase during liquid/solid phase change by numerical simulation of a benchmark test based on the well-known and debated experiment of melting of a pure gallium slab counducted by Gau & Viskanta in 1986. The adopted mathematical model includes the description of the melt flow and of the solid phase deformations. Surprisingly the conclusion reached is that, even in this case of pure material, the contribution of the solid phase to the...

On the well-balance property of Roe’s method for nonconservative hyperbolic systems. Applications to shallow-water systems

Carlos Parés, Manuel Castro (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper is concerned with the numerical approximations of Cauchy problems for one-dimensional nonconservative hyperbolic systems. The first goal is to introduce a general concept of well-balancing for numerical schemes solving this kind of systems. Once this concept stated, we investigate the well-balance properties of numerical schemes based on the generalized Roe linearizations introduced by [Toumi, J. Comp. Phys. 102 (1992) 360–373]. Next, this general theory is applied to obtain well-balanced...

On the well-balance property of Roe's method for nonconservative hyperbolic systems. applications to shallow-water systems

Carlos Parés, Manuel Castro (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper is concerned with the numerical approximations of Cauchy problems for one-dimensional nonconservative hyperbolic systems. The first goal is to introduce a general concept of well-balancing for numerical schemes solving this kind of systems. Once this concept stated, we investigate the well-balance properties of numerical schemes based on the generalized Roe linearizations introduced by [Toumi, J. Comp. Phys.102 (1992) 360–373]. Next, this general theory is applied to obtain well-balanced...

Currently displaying 61 – 80 of 102