Integral equations of the linear sloshing in an infinite chute and their discretization.
An exploratory study is performed to investigate the use of a time-dependent discrete adjoint methodology for design optimization of a high-lift wing configuration augmented with an active flow control system. The location and blowing parameters associated with a series of jet actuation orifices are used as design variables. In addition, a geometric parameterization scheme is developed to provide a compact set of design variables describing the wing...
The paper is concerned with the numerical solution of interaction of compressible flow and a vibrating airfoil with two degrees of freedom, which can rotate around an elastic axis and oscillate in the vertical direction. Compressible flow is described by the Navier-Stokes equations written in the ALE form. This system is discretized by the semi-implicit discontinuous Galerkin finite element method (DGFEM) and coupled with the solution of ordinary differential equations describing the airfoil motion....
This paper deals with the non-conservative coupling of two one-dimensional barotropic Euler systems at an interface at x = 0. The closure pressure laws differ in the domains x < 0 and x > 0, and a Dirac source term concentrated at x = 0 models singular pressure losses. We propose two numerical methods. The first one relies on ghost state reconstructions at the interface while the second is based on a suitable relaxation framework. Both methods satisfy a well-balanced property for stationary...
This paper is concerned with numerical methods for compressible multicomponent fluids. The fluid components are assumed immiscible, and are separated by material interfaces, each endowed with its own equation of state (EOS). Cell averages of computational cells that are occupied by several fluid components require a “mixed-cell” EOS, which may not always be physically meaningful, and often leads to spurious oscillations. We present a new interface tracking algorithm, which avoids using mixed-cell...
We consider the identification of a distributed parameter in an elliptic variational inequality. On the basis of an optimal control problem formulation, the application of a primal-dual penalization technique enables us to prove the existence of multipliers giving a first order characterization of the optimal solution. Concerning the parameter we consider different regularity requirements. For the numerical realization we utilize a complementarity function, which allows us to rewrite the optimality...
We consider the identification of a distributed parameter in an elliptic variational inequality. On the basis of an optimal control problem formulation, the application of a primal-dual penalization technique enables us to prove the existence of multipliers giving a first order characterization of the optimal solution. Concerning the parameter we consider different regularity requirements. For the numerical realization we utilize a complementarity function, which allows us to rewrite the optimality...
These past few years, new types of computational architectures based on graphics processors have emerged. These technologies provide important computational resources at low cost and low energy consumption. Lots of developments have been done around GPU and many tools and libraries are now available to implement efficiently softwares on those architectures.This article contains the two contributions of the mini-symposium about GPU organized by Loïc Gouarin (Laboratoire de Mathématiques d’Orsay),...
We propose and analyze a semi Lagrangian method for the convection-diffusion equation. Error estimates for both semi and fully discrete finite element approximations are obtained for convection dominated flows. The estimates are posed in terms of the projections constructed in [Chrysafinos and Walkington, SIAM J. Numer. Anal. 43 (2006) 2478–2499; Chrysafinos and Walkington, SIAM J. Numer. Anal. 44 (2006) 349–366] and the dependence of various constants upon the diffusion parameter is ...