On symmetric equilibrium of an isothermal gas with a free boundary and a body force.
We consider a system of balance laws describing the motion of an ionized compressible fluid interacting with magnetic fields and radiation effects. The local-in-time existence of a unique smooth solution for the Cauchy problem is proven. The proof follows from the method of successive approximations.
The existence of solutions to the Dirichlet problem for the compressible linearized Navier-Stokes system is proved in a class such that the velocity vector belongs to with r > 3. The proof is done in two steps. First the existence for local problems with constant coefficients is proved by applying the Fourier transform. Next by applying the regularizer technique the existence in a bounded domain is shown.
We prove existence and a representation formula for solutions to the equations describing steady flows of an isothermal, viscous, compressible gas having a positive infimum for the density , moving in an exterior domain, when the speed of the obstacle and the external forces are sufficiently small.
We consider the motion of a viscous compressible heat conducting fluid in ℝ³ bounded by a free surface which is under constant exterior pressure. Assuming that the initial velocity is sufficiently small, the initial density and the initial temperature are close to constants, the external force, the heat sources and the heat flow vanish, we prove the existence of global-in-time solutions which satisfy, at any moment of time, the properties prescribed at the initial moment.
We show that the global-in-time solutions to the compressible Navier-Stokes equations driven by highly oscillating external forces stabilize to globally defined (on the whole real line) solutions of the same system with the driving force given by the integral mean of oscillations. Several stability results will be obtained.
We consider the compressible Navier-Stokes-Korteweg (N-S-K) equations. Through a remarkable identity, we reveal a relationship between the quantum hydrodynamic system and capillary fluids. Using some interesting inequalities from quantum fluids theory, we prove the stability of weak solutions for the N-S-K equations in the periodic domain , when N=2,3.
We analyze the compressible isentropic Navier–Stokes equations (Lions, 1998) in the two-dimensional case with . These equations also modelize the shallow water problem in height-flow rate formulation used to solve the flow in lakes and perfectly well-mixed sea. We establish a convergence result for the time-discretized problem when the momentum equation and the continuity equation are solved with the Galerkin method, without adding a penalization term in the continuity equation as it is made in...
We analyze the compressible isentropic Navier–Stokes equations (Lions, 1998) in the two-dimensional case with . These equations also modelize the shallow water problem in height-flow rate formulation used to solve the flow in lakes and perfectly well-mixed sea. We establish a convergence result for the time-discretized problem when the momentum equation and the continuity equation are solved with the Galerkin method, without adding a penalization term in the continuity equation as it is made in Lions...