Previous Page 2

Displaying 21 – 28 of 28

Showing per page

An entropy stable finite volume method for a compressible two phase model

Eduard Feireisl, Mădălina Petcu, Bangwei She (2023)

Applications of Mathematics

We study a binary mixture of compressible viscous fluids modelled by the Navier-Stokes-Allen-Cahn system with isentropic or ideal gas law. We propose a finite volume method for the approximation of the system based on upwinding and artificial diffusion approaches. We prove the entropy stability of the numerical method and present several numerical experiments to support the theory.

An implicit scheme to solve a system of ODEs arising from the space discretization of nonlinear diffusion equations

Éric Boillat (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this article, we consider the initial value problem which is obtained after a space discretization (with space step h ) of the equations governing the solidification process of a multicomponent alloy. We propose a numerical scheme to solve numerically this initial value problem. We prove an error estimate which is not affected by the step size h chosen in the space discretization. Consequently, our scheme provides global convergence without any stability condition between h and the time step size...

An implicit scheme to solve a system of ODEs arising from the space discretization of nonlinear diffusion equations

Éric Boillat (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this article, we consider the initial value problem which is obtained after a space discretization (with space step h) of the equations governing the solidification process of a multicomponent alloy. We propose a numerical scheme to solve numerically this initial value problem. We prove an error estimate which is not affected by the step size h chosen in the space discretization. Consequently, our scheme provides global convergence without any stability condition between h and the time...

An unconditionally stable finite element-finite volume pressure correction scheme for the drift-flux model

Laura Gastaldo, Raphaèle Herbin, Jean-Claude Latché (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We present in this paper a pressure correction scheme for the drift-flux model combining finite element and finite volume discretizations, which is shown to enjoy essential stability features of the continuous problem: the scheme is conservative, the unknowns are kept within their physical bounds and, in the homogeneous case (i.e. when the drift velocity vanishes), the discrete entropy of the system decreases; in addition, when using for the drift velocity a closure law which takes the form of...

Analyse mathématique de modèles variationells en simulation pétrolière. Le cas du modèle black-oil pseudo-compositionnel standard isoterme.

Gérard Gagneux, Ann-Marie Lefevere, Monique Madaune-Tort (1989)

Revista Matemática de la Universidad Complutense de Madrid

The aim of the paper is an analytical and numerical approach to the pseudo-compositional black-oil model for simulating a 3-D isothermal constrained polyphasic flow in porous media, taking into account realistic boundary conditions. The handling of the component conservation laws leads to a strongly coupled system including parabolic quasilinear degenerated equations and first-order hyperbolic inequalities: the introduction of unilateral problems arises from the nature of the thermodynamical equilibrium...

Analysis of the boundary symbol for the two-phase Navier-Stokes equations with surface tension

Jan Prüss, Gieri Simonett (2009)

Banach Center Publications

The two-phase free boundary value problem for the Navier-Stokes system is considered in a situation where the initial interface is close to a halfplane. We extract the boundary symbol which is crucial for the dynamics of the free boundary and present an analysis of this symbol. Of particular interest are its singularities and zeros which lead to refined mapping properties of the corresponding operator.

Application of a multiphase flow code for investigation of influence of capillary pressure parameters on two-phase flow

Jiří Mikyška, Tissa H. Illangasekare (2007)

Kybernetika

We have developed a multiphase flow code that has been applied to study the behavior of non-aqueous phase liquids (NAPL) in the subsurface. We describe model formulation, discretization, and use the model for numerical investigation of sensitivity of the NAPL plume with respect to capillary parameters of the soil. In this paper the soil is assumed to be spatially homogeneous. A 2-D reference problem has been chosen and has been recomputed repeatedly with modified parameters of the Brooks–Corey capillary...

Currently displaying 21 – 28 of 28

Previous Page 2