A hierarchy of hydrodynamic models for plasmas. Zero-electron-mass limits in the drift-diffusion equations
This article presents the derivation of a semi-classical model of electromagnetic-wave propagation in a non centro-symmetric crystal. It consists of Maxwell’s equations for the wave field coupled with a version of Bloch’s equations which takes fully into account the discrete symmetry group of the crystal. The model is specialized in the case of a KDP crystal for which information about the dipolar moments at the Bloch level can be recovered from the macroscopic dispersion properties of the material....
This article presents the derivation of a semi-classical model of electromagnetic-wave propagation in a non centro-symmetric crystal. It consists of Maxwell's equations for the wave field coupled with a version of Bloch's equations which takes fully into account the discrete symmetry group of the crystal. The model is specialized in the case of a KDP crystal for which information about the dipolar moments at the Bloch level can be recovered from the macroscopic dispersion properties of the material. ...
We study in this paper the electromagnetic field generated in a conductor by an alternating current density. The resulting interface problem (see Bossavit (1993)) between the metal and the dielectric medium is treated by a mixed–FEM and BEM coupling method. We prove that our BEM-FEM formulation is well posed and that it leads to a convergent Galerkin method.
We study in this paper the electromagnetic field generated in a conductor by an alternating current density. The resulting interface problem (see Bossavit (1993)) between the metal and the dielectric medium is treated by a mixed–FEM and BEM coupling method. We prove that our BEM-FEM formulation is well posed and that it leads to a convergent Galerkin method.
We study existence and nonexistence of solutions (both stationary and evolution) for a parabolic-elliptic system describing the electrodiffusion of ions. In this model the evolution of temperature is also taken into account. For stationary states the existence of an external potential is also assumed.
In this paper, we continue the study of the Raman amplification in plasmas that we initiated in [Colin and Colin, Diff. Int. Eqs. 17 (2004) 297–330; Colin and Colin, J. Comput. Appl. Math. 193 (2006) 535–562]. We point out that the Raman instability gives rise to three components. The first one is collinear to the incident laser pulse and counter propagates. In 2-D, the two other ones make a non-zero angle with the initial pulse and propagate forward. Furthermore they are symmetric with respect...
In this paper, we continue the study of the Raman amplification in plasmas that we initiated in [Colin and Colin, Diff. Int. Eqs.17 (2004) 297–330; Colin and Colin, J. Comput. Appl. Math.193 (2006) 535–562]. We point out that the Raman instability gives rise to three components. The first one is collinear to the incident laser pulse and counter propagates. In 2-D, the two other ones make a non-zero angle with the initial pulse and propagate forward. Furthermore they are symmetric with respect to...
In this paper we construct a new H(div)-conforming projection-based p-interpolation operator that assumes only Hr(K) -1/2(div, K)-regularity (r > 0) on the reference element (either triangle or square) K. We show that this operator is stable...
In this paper we construct a new H(div)-conforming projection-based p-interpolation operator that assumes only Hr(K) -1/2(div, K)-regularity (r > 0) on the reference element (either triangle or square) K. We show that this operator is stable with...
This paper is devoted to the spectral analysis of a non elliptic operator , deriving from the study of superconducting micro-strip lines. Once a sufficient condition for the self-adjointness of operator has been derived, we determine its continuous spectrum. Then, we show that is unbounded from below and that it has a sequence of negative eigenvalues tending to . Using the Min-Max principle, a characterization of its positive eigenvalues is given. Thanks to this characterization, some conditions...
This paper is devoted to the spectral analysis of a non elliptic operator A , deriving from the study of superconducting micro-strip lines. Once a sufficient condition for the self-adjointness of operator A has been derived, we determine its continuous spectrum. Then, we show that A is unbounded from below and that it has a sequence of negative eigenvalues tending to -∞. Using the Min-Max principle, a characterization of its positive eigenvalues is given. Thanks to this characterization, some...
We use the work of Milton, Seppecher, and Bouchitté on variational principles for waves in lossy media to formulate a finite element method for solving the complex Helmholtz equation that is based entirely on minimization. In particular, this method results in a finite element matrix that is symmetric positive-definite and therefore simple iterative descent methods and preconditioning can be used to solve the resulting system of equations. We also derive an error bound for the method and illustrate...