Applied Mathematics and the Imaging of the Brain
This paper addresses some results on the development of an approximate method for computing the acoustic field scattered by a three-dimensional penetrable object immersed into an incompressible fluid. The basic idea of the method consists in using on-surface differential operators that locally reproduce the interior propagation phenomenon. This approach leads to integral equation formulations with a reduced computational cost compared to standard integral formulations coupling both the transmitted...
This paper addresses some results on the development of an approximate method for computing the acoustic field scattered by a three-dimensional penetrable object immersed into an incompressible fluid. The basic idea of the method consists in using on-surface differential operators that locally reproduce the interior propagation phenomenon. This approach leads to integral equation formulations with a reduced computational cost compared to standard integral formulations coupling both the transmitted...
In this article, we derive a complete mathematical analysis of a coupled 1D-2D model for 2D wave propagation in media including thin slots. Our error estimates are illustrated by numerical results.
Asymptotics of solutions to Schrödinger equations with singular magnetic and electric potentials is investigated. By using a Almgren type monotonicity formula, separation of variables, and an iterative Brezis–Kato type procedure, we describe the exact behavior near the singularity of solutions to linear and semilinear (critical and subcritical) elliptic equations with an inverse square electric potential and a singular magnetic potential with a homogeneity of order −1.
We consider solutions to the time-harmonic Maxwell's Equations of a TE (transverse electric) nature. For such solutions we provide a rigorous derivation of the leading order boundary perturbations resulting from the presence of a finite number of interior inhomogeneities of small diameter. We expect that these formulas will form the basis for very effective computational identification algorithms, aimed at determining information about the inhomogeneities from electromagnetic boundary measurements. ...
We analyze the accuracy and well-posedness of generalized impedance boundary value problems in the framework of scattering problems from unbounded highly absorbing media. We restrict ourselves in this first work to the scalar problem (E-mode for electromagnetic scattering problems). Compared to earlier works, the unboundedness of the rough absorbing layer introduces severe difficulties in the analysis for the generalized impedance boundary conditions, since classical compactness arguments are no...
The nonlinear integro-differential system associated with the penetration of a magnetic field into a substance is considered. The asymptotic behavior as of solutions for two initial-boundary value problems are studied. The problem with non-zero conditions on one side of the lateral boundary is discussed. The problem with homogeneous boundary conditions is studied too. The rates of convergence are given. Results presented show the difference between stabilization characters of solutions of these...
A class of infinite-dimensional dissipative dynamical systems is defined for which there exists a unique equilibrium point, and the rate of convergence to this point of the trajectories of a dynamical system from the above class is exponential. All the trajectories of the system converge to this point as t → +∞, no matter what the initial conditions are. This class consists of strongly dissipative systems. An example of such systems is provided by passive systems in network theory (see, e.g., MR0601947...