Loading [MathJax]/extensions/MathZoom.js
- Subjects
- 78-XX Optics, electromagnetic theory
Displaying 81 –
100 of
114
Due to the widespread use of mobile robots in various applications, the path planning problem has emerged as one of the important research topics. Path planning is defined as finding the shortest path starting from the initial point to the destination in such a way as to get rid of the obstacles it encounters. In this study, we propose a path planning algorithm based on a teaching-learning-based optimization (TLBO) algorithm with Bezier curves in a static environment with obstacles. The proposed...
We present the current Reduced Basis framework for the efficient numerical approximation of parametrized steady Navier–Stokes equations. We have extended the existing setting developed in the last decade (see e.g. [S. Deparis, SIAM J. Numer. Anal. 46 (2008) 2039–2067; A. Quarteroni and G. Rozza, Numer. Methods Partial Differ. Equ. 23 (2007) 923–948; K. Veroy and A.T. Patera, Int. J. Numer. Methods Fluids 47 (2005) 773–788]) to more general affine and nonaffine parametrizations (such as volume-based...
In questo lavoro viene considerato il modello bidimensionale completo di sistema elettromagnetico in movimento: le equazioni dei campi elettromagnetici sono accoppiate con quelle della meccanica e il sistema così ottenuto risulta essere non lineare nell'accoppiamento. Vengono analizzate la buona posizione del problema e la regolarità della soluzione continua; si propone inoltre uno schema di discretizzazione di tipo esplicito. Si dimostra la buona posizione e la convergenza della formulazione discreta...
This paper is concerned with the nonlinear theory of equilibrium for materials which do not conduct electricity. An existence and uniqueness result is established.
An implicit-explicit (IMEX) method is developed for the numerical solution of reaction-diffusion equations with pure Neumann boundary conditions. The corresponding method of lines scheme with finite differences is analyzed: explicit conditions are given for its convergence in the ‖·‖∞ norm. The results are applied to a model for determining the overpotential in a proton exchange membrane (PEM) fuel cell.
In this paper, we are interested in finding the optimal shape of a magnet. The criterion to maximize is the jump of the electromagnetic field between two different configurations. We prove existence of an optimal shape into a natural class of domains. We introduce a quasi-Newton type algorithm which moves the boundary. This method is very efficient to improve an initial shape. We give some numerical results.
In this paper, we are interested in finding the optimal shape
of a magnet. The criterion to maximize is the jump of the
electromagnetic field between two different configurations.
We prove existence of an optimal shape into a natural class
of domains. We introduce a quasi-Newton type algorithm which
moves the boundary. This method is very efficient to improve
an initial shape. We give some numerical results.
This note reports on recent results on the anisotropic Calderón problem obtained in a joint work with Carlos E. Kenig, Mikko Salo and Gunther Uhlmann [8]. The approach is based on the construction of complex geometrical optics solutions to the Schrödinger equation involving phases introduced in the work [12] of Kenig, Sjöstrand and Uhlmann in the isotropic setting. We characterize those manifolds where the construction is possible, and give applications to uniqueness for the corresponding anisotropic...
Currently displaying 81 –
100 of
114