Displaying 241 – 260 of 549

Showing per page

Lipschitz stability in the determination of the principal part of a parabolic equation

Ganghua Yuan, Masahiro Yamamoto (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Let y(h)(t,x) be one solution to t y ( t , x ) - i , j = 1 n j ( a i j ( x ) i y ( t , x ) ) = h ( t , x ) , 0 < t < T , x Ω with a non-homogeneous term h, and y | ( 0 , T ) × Ω = 0 , where Ω n is a bounded domain. We discuss an inverse problem of determining n(n+1)/2 unknown functions aij by { ν y ( h ) | ( 0 , T ) × Γ 0 , y ( h ) ( θ , · ) } 1 0 after selecting input sources h 1 , . . . , h 0 suitably, where Γ 0 is an arbitrary subboundary, ν denotes the normal derivative, 0 < θ < T and 0 . In the case of 0 = ( n + 1 ) 2 n / 2 , we prove the Lipschitz stability in the inverse problem if we choose ( h 1 , . . . , h 0 ) from a set { C 0 ( ( 0 , T ) × ω ) } 0 with an arbitrarily fixed subdomain ω Ω . Moreover we can take 0 = ( n + 3 ) n / 2 by making special choices for...

Local Bifurcations in a Nonlinear Model of a Bioreactor

Dimitrova, Neli (2009)

Serdica Journal of Computing

This paper is partially supported by the Bulgarian Science Fund under grant Nr. DO 02– 359/2008.We consider a nonlinear model of a continuously stirred bioreactor and study the stability of the equilibrium points with respect to practically important model parameters. We determine regions in the parameter space where the steady states undergo transcritical and Hopf bifurcations. In the latter case, the stability of the emerged limit cycles is also studied. Numerical simulations in the computer algebra...

Local existence of solutions of a free boundary problem for equations of compressible viscous heat-conducting fluids

Ewa Zadrzyńska, Wojciech Zajączkowski (1998)

Applicationes Mathematicae

The local existence and the uniqueness of solutions for equations describing the motion of viscous compressible heat-conducting fluids in a domain bounded by a free surface is proved. First, we prove the existence of solutions of some auxiliary problems by the Galerkin method and by regularization techniques. Next, we use the method of successive approximations to prove the local existence for the main problem.

Long time existence of solutions to 2d Navier-Stokes equations with heat convection

Jolanta Socała, Wojciech M. Zajączkowski (2009)

Applicationes Mathematicae

Global existence of regular solutions to the Navier-Stokes equations for (v,p) coupled with the heat convection equation for θ is proved in the two-dimensional case in a bounded domain. We assume the slip boundary conditions for velocity and the Neumann condition for temperature. First an appropriate estimate is shown and next the existence is proved by the Leray-Schauder fixed point theorem. We prove the existence of solutions such that v , θ W s 2 , 1 ( Ω T ) , p L s ( Ω T ) , s>2.

Long-time dynamics of an integro-differential equation describing the evolution of a spherical flame.

Hélène Rouzaud (2003)

Revista Matemática Complutense

This article is devoted to the study of a flame ball model, derived by G. Joulin, which satisfies a singular integro-differential equation. We prove that, when radiative heat losses are too important, the flame always quenches; when heat losses are smaller, it stabilizes or quenches, depending on an energy input parameter. We also examine the asymptotics of the radius for these different regimes.

Mathematical analysis of the discharge of a laminar hot gas in a colder atmosphere.

Stanislav Antontsev, Jesús Ildefonso Díaz (2007)

RACSAM

We study the boundary layer approximation of the, already classical, mathematical model which describes the discharge of a laminar hot gas in a stagnant colder atmosphere of the same gas. We start by proving the existence and uniqueness of solutions of the nondegenerate problem under assumptions implying that the temperature T and the horizontal velocity u of the gas are strictly positive: T ≥ δ &gt; 0 and u ≥ ε &gt; 0 (here δ and ε are given as boundary conditions in the external atmosphere)....

Mathematical and numerical analysis of radiative heat transfer in semi-transparent media

Yao-Chuang Han, Yu-Feng Nie, Zhan-Bin Yuan (2019)

Applications of Mathematics

This paper is concerned with mathematical and numerical analysis of the system of radiative integral transfer equations. The existence and uniqueness of solution to the integral system is proved by establishing the boundedness of the radiative integral operators and proving the invertibility of the operator matrix associated with the system. A collocation-boundary element method is developed to discretize the differential-integral system. For the non-convex geometries, an element-subdivision algorithm...

Mathematical and physical aspects of the initial value problem for a nonlocal model of heat propagation with finite speed

Jerzy A. Gawinecki, Agnieszka Gawinecka, Jarosław Łazuka, J. Rafa (2013)

Applicationes Mathematicae

Theories of heat predicting a finite speed of propagation of thermal signals have come into existence during the last 50 years. It is worth emphasizing that in contrast to the classical heat theory, these nonclassical theories involve a hyperbolic type heat equation and are based on experiments exhibiting the actual occurrence of wave-type heat transport (so called second sound). This paper presents a new system of equations describing a nonlocal model of heat propagation with finite speed in the...

Mathematical description of the phase transition curve near the critical point

Tomasz Sułkowski (2007)

Applicationes Mathematicae

In this paper, by applying a simple mathematical model imitating the equation of state, behaviour of the phase transition curve near the critical point is investigated. The problem of finding the unique vapour-liquid equilibrium curve passing through the critical point is reduced to solving a nonlinear system of differential equations.

Mathematical modeling of hygro-thermal processes in deformed porous media

Beneš, Michal, Krupička, Lukáš (2019)

Programs and Algorithms of Numerical Mathematics

In this contribution we propose a model of coupled heat and moisture transport in variable saturated deformed porous media. Solution of this model provides temperature, moisture content and strain as a function of space and time. We present the detailed description of the model and a~numerical illustrative example.

Mathematical study of an evolution problem describing the thermomechanical process in shape memory alloys

Pierluigi Colli (1991)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this paper we prove existence, uniqueness, and continuous dependence for a one-dimensional time-dependent problem related to a thermo-mechanical model of structural phase transitions in solids. This model assumes the free energy depending on temperature, macroscopic deformation and also on the proportions of the phases. Here we neglect regularizing terms in the momentum balance equation and in the constitutive laws for the phase proportions.

Currently displaying 241 – 260 of 549