On wave functions in quantum mechanics. Part 3. A theory of quantum mechanics where wave functions are defined by means of surely fundamental observables
The algebraic theory of quantum logics overlaps in places with certain areas of cybernetics, notably with the field of artificial intelligence (see, e. g., [19, 20]). Recently an effort has been exercised to advance with logics that possess a symmetric difference ([13, 14]) - with so called orthocomplemented difference lattices (ODLs). This paper further contributes to this effort. In [13] the author constructs an ODL that is not set-representable. This example is quite elaborate. A main result...
In the logico-algebraic foundation of quantum mechanics one often deals with the orthomodular lattices (OML) which enjoy state-separating properties of noncompatible pairs (see e.g. , and ). These properties usually guarantee reasonable “richness” of the state space—an assumption needed in developing the theory of quantum logics. In this note we consider these classes of OMLs from the universal algebra standpoint, showing, as the main result, that these classes form quasivarieties. We also illustrate...