Displaying 61 – 80 of 206

Showing per page

Hyperbolic wavelet discretization of the two-electron Schrödinger equation in an explicitly correlated formulation

Markus Bachmayr (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

In the framework of an explicitly correlated formulation of the electronic Schrödinger equation known as the transcorrelated method, this work addresses some fundamental issues concerning the feasibility of eigenfunction approximation by hyperbolic wavelet bases. Focusing on the two-electron case, the integrability of mixed weak derivatives of eigenfunctions of the modified problem and the improvement compared to the standard formulation are discussed....

Internal Symmetries and Additional Quantum Numbers for Nanoparticles

V.G. Yarzhemsky (2013)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

Wavefunctions of symmetrical nanoparticles are considered making use of induced representation method. It is shown that when, at the same total symmetry, the order of local symmetry group decreases, additional quantum numbers are required for complete labelling of electron states. It is shown that the labels of irreducible representations of intermediate subgroups can be used for complete classification of states in the case of repeating IRs in symmetry adapted linear combinations. The intermediate...

Les équations de Dirac-Fock

Maria J. Esteban, Eric Séré (1997/1998)

Séminaire Équations aux dérivées partielles

Les équations de Dirac-Fock sont l’analogue relativiste des équations de Hartree-Fock. Elles sont utilisées dans les calculs numériques de la chimie quantique, et donnent des résultats sur les électrons dans les couches profondes des atomes lourds. Ces résultats sont en très bon accord avec les données expérimentales. Par une méthode variationnelle, nous montrons l’existence d’une infinité de solutions des équations de Dirac-Fock “sans projecteur", pour des systèmes coulombiens d’électrons dans...

Local Exchange Potentials for Electronic Structure Calculations

Eric Cancès, Gabriel Stoltz, Gustavo E. Scuseria, Viktor N. Staroverov, Ernest R. Davidson (2009)

MathematicS In Action

The Hartree-Fock exchange operator is an integral operator arising in the Hartree-Fock model as well as in some instances of the density functional theory. In a number of applications, it is convenient to approximate this integral operator by a multiplication operator, i.e. by a local potential. This article presents a detailed analysis of the mathematical properties of various local approximations to the nonlocal Hartree-Fock exchange operator including the Slater potential, the optimized effective...

Low-rank tensor representation of Slater-type and Hydrogen-like orbitals

Martin Mrovec (2017)

Applications of Mathematics

The paper focuses on a low-rank tensor structured representation of Slater-type and Hydrogen-like orbital basis functions that can be used in electronic structure calculations. Standard packages use the Gaussian-type basis functions which allow us to analytically evaluate the necessary integrals. Slater-type and Hydrogen-like orbital functions are physically more appropriate, but they are not analytically integrable. A numerical integration is too expensive when using the standard discretization...

Mean-Field Limit of Quantum Bose Gases and Nonlinear Hartree Equation

Jürg Fröhlich, Enno Lenzmann (2003/2004)

Séminaire Équations aux dérivées partielles

We discuss the Hartree equation arising in the mean-field limit of large systems of bosons and explain its importance within the class of nonlinear Schrödinger equations. Of special interest to us is the Hartree equation with focusing nonlinearity (attractive two-body interactions). Rigorous results for the Hartree equation are presented concerning: 1) its derivation from the quantum theory of large systems of bosons, 2) existence and stability of Hartree solitons, and 3) its point-particle (Newtonian)...

Mesures limites pour l’équation de Helmholtz dans le cas non captif

Jean-François Bony (2009)

Annales de la faculté des sciences de Toulouse Mathématiques

Cet article est consacré à l’étude des mesures limites associées à la solution de l’équation de Helmholtz avec un terme source se concentrant en un point. Le potentiel est supposé C et l’opérateur non-captif. La solution de l’équation de Schrödinger semi-classique s’écrit alors micro-localement comme somme finie de distributions lagrangiennes. Sous une hypothèse géométrique, qui généralise l’hypothèse du viriel, on en déduit que la mesure limite existe et qu’elle vérifie des propriétés standard....

Currently displaying 61 – 80 of 206