Asymptotic behaviour and the moduli space of doubly-periodic instantons
We study doubly-periodic instantons, i.e. instantons on the product of a 1-dimensional complex torus with a complex line , with quadratic curvature decay. We determine the asymptotic behaviour of these instantons, constructing new asymptotic invariants. We show that the underlying holomorphic bundle extends to . The converse statement is also true, namely a holomorphic bundle on which is flat on the torus at infinity, and satisfies a stability condition, comes from a doubly-periodic instanton....