The search session has expired. Please query the service again.
The algebraic formulation of Wick’s theorem that allows one to present the vacuum or thermal averages of the chronological product of an arbitrary number of field operators as a determinant (permanent) of the matrix is proposed. Each element of the matrix is the average of the chronological product of only two operators. This formulation is extremely convenient for practical calculations in quantum field theory, statistical physics, and quantum chemistry by the standard packages of the well known...
For fixed magnetic quantum number m results on spectral properties and scattering theory are given for the three-dimensional Schrödinger operator with a constant magnetic field and an axisymmetrical electric potential V. In various, mostly singular settings, asymptotic expansions for the resolvent of the Hamiltonian H m+Hom+V are deduced as the spectral parameter tends to the lowest Landau threshold. Furthermore, scattering theory for the pair (H m, H om) is established and asymptotic expansions...
The problem of recovering the singularities of a potential from backscattering data is studied. Let be a smooth precompact domain in which is convex (or normally accessible). Suppose with and conormal to the boundary of and supported inside then if the backscattering data of and are equal up to smoothing, we show that is smooth.
2000 Mathematics Subject Classification: 35P25, 81U20, 35S30, 47A10, 35B38.We study the microlocal structure of the resolvent of the semiclassical Schrödinger operator with short range potential at an energy which is a unique non-degenerate global maximum of the potential. We prove that it is a semiclassical Fourier integral operator quantizing the incoming and outgoing Lagrangian submanifolds associated to the fixed hyperbolic point. We then discuss two applications of this result to describing...
Currently displaying 1 –
20 of
33