Displaying 21 – 40 of 63

Showing per page

From Planck to Ramanujan : a quantum 1 / f noise in equilibrium

Michel Planat (2002)

Journal de théorie des nombres de Bordeaux

We describe a new model of massless thermal bosons which predicts an hyperbolic fluctuation spectrum at low frequencies. It is found that the partition function per mode is the Euler generating function for unrestricted partitions p ( n ). Thermodynamical quantities carry a strong arithmetical structure : they are given by series with Fourier coefficients equal to summatory functions σ k ( n ) of the power of divisors, with k = - 1 for the free energy, k = 0 for the number of particles and k = 1 for the internal energy. Low...

Gaudin's model and the generating function of the Wroński map

Inna Scherbak (2003)

Banach Center Publications

We consider the Gaudin model associated to a point z ∈ ℂⁿ with pairwise distinct coordinates and to the subspace of singular vectors of a given weight in the tensor product of irreducible finite-dimensional sl₂-representations, [G]. The Bethe equations of this model provide the critical point system of a remarkable rational symmetric function. Any critical orbit determines a common eigenvector of the Gaudin hamiltonians called a Bethe vector. In [ReV], it was shown that for generic...

Limit distributions of many-particle spectra and q-deformed Gaussian variables

Piotr Śniady (2006)

Banach Center Publications

We find the limit distributions for a spectrum of a system of n particles governed by a k-body interaction. The hamiltonian of this system is modelled by a Gaussian random matrix. We show that the limit distribution is a q-deformed Gaussian distribution with the deformation parameter q depending on the fraction k/√n. The family of q-deformed Gaussian distributions include the Gaussian distribution and the semicircular law; therefore our result is a generalization of the results of Wigner [Wig1,...

Many-body aspects of approach to equilibrium

Eric Carlen, M. C. Carvalho, Michael Loss (2000)

Journées équations aux dérivées partielles

Kinetic theory and approach to equilibrium is usually studied in the realm of the Boltzmann equation. With a few notable exceptions not much is known about the solutions of this equation and about its derivation from fundamental principles. In 1956 Mark Kac introduced a probabilistic model of N interacting particles. The velocity distribution is governed by a Markov semi group and the evolution of its single particle marginals is governed (in the infinite particle limit) by a caricature of the spatially...

Mean-field evolution of fermionic systems

Marcello Porta (2014/2015)

Séminaire Laurent Schwartz — EDP et applications

We study the dynamics of interacting fermionic systems, in the mean-field regime. We consider initial states which are close to quasi-free states and prove that, under suitable assumptions on the inital data and on the many-body interaction, the quantum evolution of the system is approximated by a time-dependent quasi-free state. In particular we prove that the evolution of the reduced one-particle density matrix converges, as the number of particles goes to infinity, to the solution of the time-dependent...

On the Klainerman–Machedon conjecture for the quantum BBGKY hierarchy with self-interaction

Xuwen Chen, Justin Holmer (2016)

Journal of the European Mathematical Society

We consider the 3D quantum BBGKY hierarchy which corresponds to the N -particle Schrödinger equation. We assume the pair interaction is N 3 β 1 V ( B β ) . For the interaction parameter β ( 0 , 2 / 3 ) , we prove that, provided an energy bound holds for solutions to the BBKGY hierarchy, the N limit points satisfy the space-time bound conjectured by S. Klainerman and M. Machedon [45] in 2008. The energy bound was proven to hold for β ( 0 , 3 / 5 ) in [28]. This allows, in the case β ( 0 , 3 / 5 ) , for the application of the Klainerman–Machedon uniqueness theorem...

Positive energy quantization of linear dynamics

Jan Dereziński, Christian Gérard (2010)

Banach Center Publications

The abstract mathematical structure behind the positive energy quantization of linear classical systems is described. It is separated into three stages: the description of a classical system, the algebraic quantization and the Hilbert space quantization. Four kinds of systems are distinguished: neutral bosonic, neutral bosonic, charged bosonic and charged fermionic. The formalism that is described follows closely the usual constructions employed in quantum physics to introduce noninteracting quantum...

Currently displaying 21 – 40 of 63