Displaying 21 – 40 of 245

Showing per page

An analysis of the effect of ghost force oscillation on quasicontinuum error

Matthew Dobson, Mitchell Luskin (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

The atomistic to continuum interface for quasicontinuum energies exhibits nonzero forces under uniform strain that have been called ghost forces. In this paper, we prove for a linearization of a one-dimensional quasicontinuum energy around a uniform strain that the effect of the ghost forces on the displacement nearly cancels and has a small effect on the error away from the interface. We give optimal order error estimates that show that the quasicontinuum displacement converges to the atomistic...

An error analysis of the multi-configuration time-dependent Hartree method of quantum dynamics

Dajana Conte, Christian Lubich (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper gives an error analysis of the multi-configuration time-dependent Hartree (MCTDH) method for the approximation of multi-particle time-dependent Schrödinger equations. The MCTDH method approximates the multivariate wave function by a linear combination of products of univariate functions and replaces the high-dimensional linear Schrödinger equation by a coupled system of ordinary differential equations and low-dimensional nonlinear partial differential equations. The main result of this...

Aperiodicity of the Hamiltonian flow in the Thomas-Fermi potential.

Charles L. Fefferman, Luis A. Seco (1993)

Revista Matemática Iberoamericana

In [FS1] we announced a precise asymptotic formula for the ground-state energy of a non-relativistic atom. The purpose of this paper is to establish an elementary inequality that plays a crucial role in our proof of that formula. The inequality concerns the Thomas-Fermi potentialVTF = -y(ar) / r, a > 0, where y(r) is defined as the solution of⎧   y''(x) = x-1/2y3/2(x),⎨   y(0) = 1,⎩   y(∞) = 0.

Atomistic to Continuum limits for computational materials science

Xavier Blanc, Claude Le Bris, Pierre-Louis Lions (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

The present article is an overview of some mathematical results, which provide elements of rigorous basis for some multiscale computations in materials science. The emphasis is laid upon atomistic to continuum limits for crystalline materials. Various mathematical approaches are addressed. The setting is stationary. The relation to existing techniques used in the engineering literature is investigated.

Best N-term approximation in electronic structure calculations I. One-electron reduced density matrix

Heinz-Jürgen Flad, Wolfgang Hackbusch, Reinhold Schneider (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

We discuss best N-term approximation spaces for one-electron wavefunctions φ i and reduced density matrices ρ emerging from Hartree-Fock and density functional theory. The approximation spaces A q α ( H 1 ) for anisotropic wavelet tensor product bases have been recently characterized by Nitsche in terms of tensor product Besov spaces. We have used the norm equivalence of these spaces to weighted q spaces of wavelet coefficients to proof that both φ i and ρ are in A q α ( H 1 ) for all α > 0 with α = 1 q - 1 2 . Our proof is based on the...

Best N-term approximation in electronic structure calculations. II. Jastrow factors

Heinz-Jürgen Flad, Wolfgang Hackbusch, Reinhold Schneider (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

We present a novel application of best N-term approximation theory in the framework of electronic structure calculations. The paper focusses on the description of electron correlations within a Jastrow-type ansatz for the wavefunction. As a starting point we discuss certain natural assumptions on the asymptotic behaviour of two-particle correlation functions ( 2 ) near electron-electron and electron-nuclear cusps. Based on Nitsche's characterization of best N-term approximation spaces A q α ( H 1 ) , we prove...

Bosons in Rapid Rotation: From the Quantum Many-Body Problem to Effective Equations

Jakob Yngvason (2008/2009)

Séminaire Équations aux dérivées partielles

One of the most interesting phenomena exhibited by ultracold quantum gases is the appearance of vortices when the gas is put in rotation. The talk will bring a survey of some recent progress in understanding this phenomenon starting from the many-body ground state of a Bose gas with short range interactions. Mathematically this amounts to describing solutions of a linear Schrödinger equation with a very large number of variables in terms of a nonlinear equation with few variables and analyzing the...

Currently displaying 21 – 40 of 245