Page 1

Displaying 1 – 2 of 2

Showing per page

Pseudo-Riemannian and Hessian geometry related to Monge-Ampère structures

S. Hronek, R. Suchánek (2022)

Archivum Mathematicum

We study properties of pseudo-Riemannian metrics corresponding to Monge-Ampère structures on four dimensional T * M . We describe a family of Ricci flat solutions, which are parametrized by six coefficients satisfying the Plücker embedding equation. We also focus on pullbacks of the pseudo-metrics on two dimensional M , and describe the corresponding Hessian structures.

Currently displaying 1 – 2 of 2

Page 1