Page 1

Displaying 1 – 6 of 6

Showing per page

Algebro-geometric approach to the Ernst equation I. Mathematical Preliminaries

O. Richter, C. Klein (1997)

Banach Center Publications

1. Introduction. It is well known that methods of algebraic geometry and, in particular, Riemann surface techniques are well suited for the solution of nonlinear integrable equations. For instance, for nonlinear evolution equations, so called 'finite gap' solutions have been found by the help of these methods. In 1989 Korotkin [9] succeeded in applying these techniques to the Ernst equation, which is equivalent to Einstein's vacuum equation for axisymmetric stationary fields. But, the Ernst equation...

Analysis of a semi-Lagrangian method for the spherically symmetric Vlasov-Einstein system

Philippe Bechouche, Nicolas Besse (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider the spherically symmetric Vlasov-Einstein system in the case of asymptotically flat spacetimes. From the physical point of view this system of equations can model the formation of a spherical black hole by gravitational collapse or describe the evolution of galaxies and globular clusters. We present high-order numerical schemes based on semi-Lagrangian techniques. The convergence of the solution of the discretized problem to the exact solution is proven and high-order error estimates...

Currently displaying 1 – 6 of 6

Page 1