Page 1 Next

Displaying 1 – 20 of 21

Showing per page

Les effets de l’exposant de la fonction barrière multiplicative dans les méthodes de points intérieurs

Adama Coulibaly, Jean-Pierre Crouzeix (2003)

RAIRO - Operations Research - Recherche Opérationnelle

Les méthodes de points intérieurs en programmation linéaire connaissent un grand succès depuis l’introduction de l’algorithme de Karmarkar. La convergence de l’algorithme repose sur une fonction potentielle qui, sous sa forme multiplicative, fait apparaître un exposant p . Cet exposant est, de façon générale, choisi supérieur au nombre de variables n du problème. Nous montrons dans cet article que l’on peut utiliser des valeurs de p plus petites que n . Ceci permet d’améliorer le conditionnement de...

Les effets de l'exposant de la fonction barrière multiplicative dans les méthodes de points intérieurs

Adama Coulibaly, Jean-Pierre Crouzeix (2010)

RAIRO - Operations Research

Les méthodes de points intérieurs en programmation linéaire connaissent un grand succès depuis l'introduction de l'algorithme de Karmarkar. La convergence de l'algorithme repose sur une fonction potentielle qui, sous sa forme multiplicative, fait apparaître un exposant p. Cet exposant est, de façon générale, choisi supérieur au nombre de variables n du problème. Nous montrons dans cet article que l'on peut utiliser des valeurs de p plus petites que n. Ceci permet d'améliorer le conditionnement...

Linear fractional program under interval and ellipsoidal uncertainty

Maziar Salahi, Saeed Fallahi (2013)

Kybernetika

In this paper, the robust counterpart of the linear fractional programming problem under linear inequality constraints with the interval and ellipsoidal uncertainty sets is studied. It is shown that the robust counterpart under interval uncertainty is equivalent to a larger linear fractional program, however under ellipsoidal uncertainty it is equivalent to a linear fractional program with both linear and second order cone constraints. In addition, for each case we have studied the dual problems...

Linear optimization with multiple equitable criteria

Michael M. Kostreva, Wodzimierz Ogryczak (2010)

RAIRO - Operations Research

The standard multiple criteria optimization starts with an assumption that the criteria are incomparable. However, there are many applications in which the criteria express ideas of allocation of resources meant to achieve some equitable distribution. This paper focuses on solving linear multiple criteria optimization problems with uniform criteria treated in an equitable way. An axiomatic definition of equitable efficiency is introduced as an refinement of Pareto-optimality. Various generation...

Linear programming duality and morphisms

Winfried Hochstättler, Jaroslav Nešetřil (1999)

Commentationes Mathematicae Universitatis Carolinae

In this paper we investigate a class of problems permitting a good characterisation from the point of view of morphisms of oriented matroids. We prove several morphism-duality theorems for oriented matroids. These generalize LP-duality (in form of Farkas' Lemma) and Minty's Painting Lemma. Moreover, we characterize all morphism duality theorems, thus proving the essential unicity of Farkas' Lemma. This research helped to isolate perhaps the most natural definition of strong maps for oriented matroids....

Linear programming interpretations of Mather’s variational principle

L. C. Evans, D. Gomes (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We discuss some implications of linear programming for Mather theory [13, 14, 15] and its finite dimensional approximations. We find that the complementary slackness condition of duality theory formally implies that the Mather set lies in an n -dimensional graph and as well predicts the relevant nonlinear PDE for the “weak KAM” theory of Fathi [6, 7, 8, 5].

Linear programming interpretations of Mather's variational principle

L. C. Evans, D. Gomes (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We discuss some implications of linear programming for Mather theory [13-15] and its finite dimensional approximations. We find that the complementary slackness condition of duality theory formally implies that the Mather set lies in an n-dimensional graph and as well predicts the relevant nonlinear PDE for the “weak KAM” theory of Fathi [5-8].

Local Changes in Lipid Composition to Match Membrane Curvature

Rolf J. Ryham (2016)

Molecular Based Mathematical Biology

A continuum mechanical model based on the Helfrich Hamiltonian is devised to investigate the coupling between lipid composition and membrane curvature. Each monolayer in the bilayer is modeled as a freely deformable surface with a director field for lipid orientation. A scalar field for the mole fraction of two lipid types accounts for local changes in composition. It allows lipids to access monolayer regions favorable to their intrinsic curvature at the expense of increasing entropic free energy....

Currently displaying 1 – 20 of 21

Page 1 Next