An improved algorithm for the solution of integer programs by the solution of associated diophantine equations
Este trabajo trata el problema de asignación de recursos cuando el objetivo es maximizar la mínima recompensa y las funciones recompensa son continuas y estrictamente crecientes. Se estudian diferentes propiedades que conducen a algoritmos que permiten de forma eficiente la resolución de gran variedad de problemas de esta naturaleza, tanto con variables continuas como discretas.
We deal with a sequencing problem that arises when there are multiple repair actions available to fix a broken man-made system and the true cause of the system failure is uncertain. The system is formally described by a probabilistic model, and it is to be repaired by a sequence of troubleshooting actions designed to identify the cause of the malfunction and fix the system. The task is to find a course of repair with minimal expected cost. We propose a binary integer programming formulation for...
We consider point sets in (Z^2,n) where no three points are on a line – also called caps or arcs. For the determination of caps with maximum cardinality and complete caps with minimum cardinality we provide integer linear programming formulations and identify some values for small n.
A cooperative game is defined as a set of players and a cost function. The distribution of the whole cost between the players can be done using the core concept, that is the set of all undominated cost allocations which prevent players from grouping. In this paper we study a game whose cost function comes from the optimal solution of a linear integer covering problem. We give necessary and sufficient conditions for the core to be nonempty and characterize its allocations using linear programming...
We present an exact method for integer linear programming problems that combines branch and bound with column generation at each node of the search tree. For the case of models involving binary column vectors only, we propose the use of so-called geometrical cuts to be added to the subproblem in order to eliminate previously generated columns. This scheme could be applied to general integer problems without specific structure. We report computational results on a successful application of this approach...
We present an exact method for integer linear programming problems that combines branch and bound with column generation at each node of the search tree. For the case of models involving binary column vectors only, we propose the use of so-called geometrical cuts to be added to the subproblem in order to eliminate previously generated columns. This scheme could be applied to general integer problems without specific structure. We report computational results on a successful application of this...