Mathematical Optimization in Air Traffic Management.
This paper considers the problem of scheduling n jobs on a single machine. A fixed processing time and an execution interval are associated with each job. Preemption is not allowed. The objective is to find a feasible job sequence that minimizes the number of tardy jobs. On the basis of an original mathematical integer programming formulation, this paper shows how good-quality lower and upper bounds can be computed. Numerical experiments are provided for assessing the proposed approach.
Uncertainty in optimization is not a new ingredient. Diverse models considering uncertainty have been developed over the last 40 years. In our paper we essentially discuss a particular uncertainty model associated with combinatorial optimization problems, developed in the 90's and broadly studied in the past years. This approach named minmax regret (in particular our emphasis is on the robust deviation criteria) is different from the classical approach for handling uncertainty, stochastic approach,...
Uncertainty in optimization is not a new ingredient. Diverse models considering uncertainty have been developed over the last 40 years. In our paper we essentially discuss a particular uncertainty model associated with combinatorial optimization problems, developed in the 90's and broadly studied in the past years. This approach named minmax regret (in particular our emphasis is on the robust deviation criteria) is different from the classical approach for handling uncertainty, stochastic approach,...
A number of algorithms have been developed -including enumeration of feasible production sequences, alternative task selection and the generation of alternative production lines- to determine the optimal sequence in which products and by-products should be produced and the times at which the various production operations for each product should be carried out to meet a given product demand pattern, taking into account the available equipment, storage costs, stopover penalties and other plant limitations.Product...