Page 1

Displaying 1 – 1 of 1

Showing per page

Quadratic 0–1 programming: Tightening linear or quadratic convex reformulation by use of relaxations

Alain Billionnet, Sourour Elloumi, Marie-Christine Plateau (2008)

RAIRO - Operations Research

Many combinatorial optimization problems can be formulated as the minimization of a 0–1 quadratic function subject to linear constraints. In this paper, we are interested in the exact solution of this problem through a two-phase general scheme. The first phase consists in reformulating the initial problem either into a compact mixed integer linear program or into a 0–1 quadratic convex program. The second phase simply consists in submitting the reformulated problem to a standard solver. The efficiency...

Currently displaying 1 – 1 of 1

Page 1