Page 1

Displaying 1 – 2 of 2

Showing per page

First-order semidefinite programming for the two-electron treatment of many-electron atoms and molecules

David A. Mazziotti (2007)

ESAIM: Mathematical Modelling and Numerical Analysis


The ground-state energy and properties of any many-electron atom or molecule may be rigorously computed by variationally computing the two-electron reduced density matrix rather than the many-electron wavefunction. While early attempts fifty years ago to compute the ground-state 2-RDM directly were stymied because the 2-RDM must be constrained to represent an N-electron wavefunction, recent advances in theory and optimization have made direct computation of the 2-RDM possible. The constraints in...

Full-Newton step infeasible interior-point algorithm for SDO problems

Hossein Mansouri (2012)

Kybernetika

In this paper we propose a primal-dual path-following interior-point algorithm for semidefinite optimization. The algorithm constructs strictly feasible iterates for a sequence of perturbations of the given problem and its dual problem. Each main step of the algorithm consists of a feasibility step and several centering steps. At each iteration, we use only full-Newton step. Moreover, we use a more natural feasibility step, which targets at the μ + -center. The iteration bound of the algorithm coincides...

Currently displaying 1 – 2 of 2

Page 1