Page 1

Displaying 1 – 7 of 7

Showing per page

On Rohn's relative sensitivity coefficient of the optimal value for a linear-fractional program

Ştefan Iulius Ţigan, Ştefan Iulius, Ioan M. Stancu-Minasian (2000)

Mathematica Bohemica

In this note we consider a linear-fractional programming problem with equality linear constraints. Following Rohn, we define a generalized relative sensitivity coefficient measuring the sensitivity of the optimal value for a linear program and a linear-fractional minimization problem with respect to the perturbations in the problem data. By using an extension of Rohn's result for the linear programming case, we obtain, via Charnes-Cooper variable change, the relative sensitivity coefficient for...

On the quadratic fractional optimization with a strictly convex quadratic constraint

Maziar Salahi, Saeed Fallahi (2015)

Kybernetika

In this paper, we have studied the problem of minimizing the ratio of two indefinite quadratic functions subject to a strictly convex quadratic constraint. First utilizing the relationship between fractional and parametric programming problems due to Dinkelbach, we reformulate the fractional problem as a univariate equation. To find the root of the univariate equation, the generalized Newton method is utilized that requires solving a nonconvex quadratic optimization problem at each iteration. A...

Optimisation d’une fonction linéaire sur l’ensemble des solutions efficaces d’un problème multicritère quadratique convexe

K. Belkeziz, A. Metrane (2004)

Annales mathématiques Blaise Pascal

Dans ce papier, nous caractérisons l’ensemble des points efficients d’un problème de programmation multicritère quadratique convexe. Nous ramenons ainsi le problème de la minimisation d’une fonction linéaire sur l’ensemble des points efficients à la résolution d’un problème de programmation fractionnaire.

Outcome space range reduction method for global optimization of sum of affine ratios problem

Hongwei Jiao, Sanyang Liu, Jingben Yin, Yingfeng Zhao (2016)

Open Mathematics

Many algorithms for globally solving sum of affine ratios problem (SAR) are based on equivalent problem and branch-and-bound framework. Since the exhaustiveness of branching rule leads to a significant increase in the computational burden for solving the equivalent problem. In this study, a new range reduction method for outcome space of the denominator is presented for globally solving the sum of affine ratios problem (SAR). The proposed range reduction method offers a possibility to delete a large...

Currently displaying 1 – 7 of 7

Page 1