Previous Page 2

Displaying 21 – 27 of 27

Showing per page

Approximation and estimation in Markov control processes under a discounted criterion

J. Adolfo Minjárez-Sosa (2004)

Kybernetika

We consider a class of discrete-time Markov control processes with Borel state and action spaces, and k -valued i.i.d. disturbances with unknown density ρ . Supposing possibly unbounded costs, we combine suitable density estimation methods of ρ with approximation procedures of the optimal cost function, to show the existence of a sequence { f ^ t } of minimizers converging to an optimal stationary policy f .

Approximation, estimation and control of stochastic systems under a randomized discounted cost criterion

Juan González-Hernández, Raquiel R. López-Martínez, J. Adolfo Minjárez-Sosa (2009)

Kybernetika

The paper deals with a class of discrete-time stochastic control processes under a discounted optimality criterion with random discount rate, and possibly unbounded costs. The state process x t and the discount process α t evolve according to the coupled difference equations x t + 1 = F ( x t , α t , a t , ξ t ) , α ...

Asymptotic properties and optimization of some non-Markovian stochastic processes

Evgueni I. Gordienko, Antonio Garcia, Juan Ruiz de Chavez (2009)

Kybernetika

We study the limit behavior of certain classes of dependent random sequences (processes) which do not possess the Markov property. Assuming these processes depend on a control parameter we show that the optimization of the control can be reduced to a problem of nonlinear optimization. Under certain hypotheses we establish the stability of such optimization problems.

Average cost Markov control processes with weighted norms: existence of canonical policies

Evgueni Gordienko, Onésimo Hernández-Lerma (1995)

Applicationes Mathematicae

This paper considers discrete-time Markov control processes on Borel spaces, with possibly unbounded costs, and the long run average cost (AC) criterion. Under appropriate hypotheses on weighted norms for the cost function and the transition law, the existence of solutions to the average cost optimality inequality and the average cost optimality equation are shown, which in turn yield the existence of AC-optimal and AC-canonical policies respectively.

Average cost Markov control processes with weighted norms: value iteration

Evgueni Gordienko, Onésimo Hernández-Lerma (1995)

Applicationes Mathematicae

This paper shows the convergence of the value iteration (or successive approximations) algorithm for average cost (AC) Markov control processes on Borel spaces, with possibly unbounded cost, under appropriate hypotheses on weighted norms for the cost function and the transition law. It is also shown that the aforementioned convergence implies strong forms of AC-optimality and the existence of forecast horizons.

Currently displaying 21 – 27 of 27

Previous Page 2