Page 1

Displaying 1 – 4 of 4

Showing per page

Shape optimization of piezoelectric sensors or actuators for the control of plates

Emmanuel Degryse, Stéphane Mottelet (2005)

ESAIM: Control, Optimisation and Calculus of Variations

This paper deals with a new method to control flexible structures by designing non-collocated sensors and actuators satisfying a pseudo-collocation criterion in the low-frequency domain. This technique is applied to a simply supported plate with a point force actuator and a piezoelectric sensor, for which we give some theoretical and numerical results. We also compute low-order controllers which stabilize pseudo-collocated systems and the closed-loop behavior show that this approach is very promising....

Shape optimization of piezoelectric sensors or actuators for the control of plates

Emmanuel Degryse, Stéphane Mottelet (2010)

ESAIM: Control, Optimisation and Calculus of Variations

This paper deals with a new method to control flexible structures by designing non-collocated sensors and actuators satisfying a pseudo-collocation criterion in the low-frequency domain. This technique is applied to a simply supported plate with a point force actuator and a piezoelectric sensor, for which we give some theoretical and numerical results. We also compute low-order controllers which stabilize pseudo-collocated systems and the closed-loop behavior show that this approach is very promising. ...

Solving systems of two–sided (max, min)–linear equations

Martin Gavalec, Karel Zimmermann (2010)

Kybernetika

A finite iteration method for solving systems of (max, min)-linear equations is presented. The systems have variables on both sides of the equations. The algorithm has polynomial complexity and may be extended to wider classes of equations with a similar structure.

Currently displaying 1 – 4 of 4

Page 1