Page 1

Displaying 1 – 4 of 4

Showing per page

Complexity of primal-dual interior-point algorithm for linear programming based on a new class of kernel functions

Safa Guerdouh, Wided Chikouche, Imene Touil, Adnan Yassine (2023)

Kybernetika

In this paper, we first present a polynomial-time primal-dual interior-point method (IPM) for solving linear programming (LP) problems, based on a new kernel function (KF) with a hyperbolic-logarithmic barrier term. To improve the iteration bound, we propose a parameterized version of this function. We show that the complexity result meets the currently best iteration bound for large-update methods by choosing a special value of the parameter. Numerical experiments reveal that the new KFs have better...

Computing minimum norm solution of a specific constrained convex nonlinear problem

Saeed Ketabchi, Hossein Moosaei (2012)

Kybernetika

The characterization of the solution set of a convex constrained problem is a well-known attempt. In this paper, we focus on the minimum norm solution of a specific constrained convex nonlinear problem and reformulate this problem as an unconstrained minimization problem by using the alternative theorem.The objective function of this problem is piecewise quadratic, convex, and once differentiable. To minimize this function, we will provide a new Newton-type method with global convergence properties....

Currently displaying 1 – 4 of 4

Page 1