Riemannian convexity in programming. II.
In applications of stochastic programming, optimization of the expected outcome need not be an acceptable goal. This has been the reason for recent proposals aiming at construction and optimization of more complicated nonlinear risk objectives. We will survey various approaches to risk quantification and optimization mainly in the framework of static and two-stage stochastic programs and comment on their properties. It turns out that polyhedral risk functionals introduced in Eichorn and Römisch...
This paper presents a study the risk probability optimality for finite horizon continuous-time Markov decision process with loss rate and unbounded transition rates. Under drift condition, which is slightly weaker than the regular condition, as detailed in existing literature on the risk probability optimality Semi-Markov decision processes, we prove that the value function is the unique solution of the corresponding optimality equation, and demonstrate the existence of a risk probability optimization...
In this note attention is focused on finding policies optimizing risk-sensitive optimality criteria in Markov decision chains. To this end we assume that the total reward generated by the Markov process is evaluated by an exponential utility function with a given risk-sensitive coefficient. The ratio of the first two moments depends on the value of the risk-sensitive coefficient; if the risk-sensitive coefficient is equal to zero we speak on risk-neutral models. Observe that the first moment of...
Linear programming (LP) problems with uncertain objective function coefficients (OFCs) are treated in this paper. In such problems, the decision-maker would be interested in an optimal solution that has robustness against uncertainty. A solution optimal for all conceivable OFCs can be considered a robust optimal solution. Then we investigate an efficient method for checking whether a given non-degenerate basic feasible (NBF) solution is optimal for all OFC vectors in a specified range. When the...
New positive definite preconditioners for the matrix free truncated Newton method are given. Corresponding algorithms are described in detail. Results of numerical experiments that confirm the efficiency and robustness of the preconditioned truncated Newton method are reported.
In this paper we present a robust real-time optimization method for the online linear oil blending process. The blending process consists in determining the optimal mix of components so that the final product satisfies a set of specifications. We examine different sources of uncertainty inherent to the blending process and show how to address this uncertainty applying the Robust Optimization techniques. The polytopal structure of our problem permits a simplified robust approach. Our method is intended...