Large Neighborhood Local Search for the P-Median Problem
A method for solving large convex optimization problems is presented. Such problems usually contain a big linear part and only a small or medium nonlinear part. The parts are tackled using two specialized (and thus efficient) external solvers: purely nonlinear and large-scale linear with a quadratic goal function. The decomposition uses an alteration of projection methods. The construction of the method is based on the zigzagging phenomenon and yields a non-asymptotic convergence, not dependent...
This paper reviews the existing literature on the combination of metaheuristics with machine learning methods and then introduces the concept of learnheuristics, a novel type of hybrid algorithms. Learnheuristics can be used to solve combinatorial optimization problems with dynamic inputs (COPDIs). In these COPDIs, the problem inputs (elements either located in the objective function or in the constraints set) are not fixed in advance as usual. On the contrary, they might vary in a predictable (non-random)...
Les méthodes de points intérieurs en programmation linéaire connaissent un grand succès depuis l’introduction de l’algorithme de Karmarkar. La convergence de l’algorithme repose sur une fonction potentielle qui, sous sa forme multiplicative, fait apparaître un exposant . Cet exposant est, de façon générale, choisi supérieur au nombre de variables du problème. Nous montrons dans cet article que l’on peut utiliser des valeurs de plus petites que . Ceci permet d’améliorer le conditionnement de...
Les méthodes de points intérieurs en programmation linéaire connaissent un grand succès depuis l'introduction de l'algorithme de Karmarkar. La convergence de l'algorithme repose sur une fonction potentielle qui, sous sa forme multiplicative, fait apparaître un exposant p. Cet exposant est, de façon générale, choisi supérieur au nombre de variables n du problème. Nous montrons dans cet article que l'on peut utiliser des valeurs de p plus petites que n. Ceci permet d'améliorer le conditionnement...
We find conditions, in multi-objective convex programming with nonsmooth functions, when the sets of efficient (Pareto) and properly efficient solutions coincide. This occurs, in particular, when all functions have locally flat surfaces (LFS). In the absence of the LFS property the two sets are generally different and the characterizations of efficient solutions assume an asymptotic form for problems with three or more variables. The results are applied to a problem in highway construction, where...
We describe the solution of a bound constrained convex quadratic problem with limited memory resources. The problem arises from physical simulations occurring within video games. The motivating problem is outlined, along with a simple interior point approach for its solution. Various linear algebra issues arising in the implementation are explored, including preconditioning, ordering and a number of ways of solving an equivalent augmented system. Alternative approaches are briefly surveyed, ...