Original title unknown
Many algorithms for globally solving sum of affine ratios problem (SAR) are based on equivalent problem and branch-and-bound framework. Since the exhaustiveness of branching rule leads to a significant increase in the computational burden for solving the equivalent problem. In this study, a new range reduction method for outcome space of the denominator is presented for globally solving the sum of affine ratios problem (SAR). The proposed range reduction method offers a possibility to delete a large...
We consider the parallel approximability of two problems arising from high multiplicity scheduling, namely the unweighted model with variable processing requirements and the weighted model with identical processing requirements. These two problems are known to be modelled by a class of quadratic programs that are efficiently solvable in polynomial time. On the parallel setting, both problems are P-complete and hence cannot be efficiently solved in parallel unless P = NC. To deal with the parallel...
We consider the parallel approximability of two problems arising from high multiplicity scheduling, namely the unweighted model with variable processing requirements and the weighted model with identical processing requirements. These two problems are known to be modelled by a class of quadratic programs that are efficiently solvable in polynomial time. On the parallel setting, both problems are P-complete and hence cannot be efficiently solved in parallel unless P = NC. To deal with the parallel...
The present paper discusses real parallel computations. On the basis of a selected group of dynamic programming algorithms, a number of factors affecting the efficiency of parallel computations such as, e.g., the way of distributing tasks, the interconnection structure between particular elements of the parallel system or the way of organizing of interprocessor communication are analyzed. Computations were implemented in the parallel multitransputer SUPER NODE 1000 system using from 5 to 50 transputers....
Parallelization is one of possible approaches for obtaining better results in terms of algorithm performance and overcome the limits of the sequential computation. In this paper, we present a study of parallelization of the opt-aiNet algorithm which comes from Artificial Immune Systems, one part of large family of population based algorithms inspired by nature. The opt-aiNet algorithm is based on an immune network theory which incorporates knowledge about mammalian immune systems in order to create...