Page 1

Displaying 1 – 4 of 4

Showing per page

Modeling Morphogenesis in silico and in vitro: Towards Quantitative, Predictive, Cell-based Modeling

R. M. H. Merks, P. Koolwijk (2009)

Mathematical Modelling of Natural Phenomena

Cell-based, mathematical models help make sense of morphogenesis—i.e. cells organizing into shape and pattern—by capturing cell behavior in simple, purely descriptive models. Cell-based models then predict the tissue-level patterns the cells produce collectively. The first step in a cell-based modeling approach is to isolate sub-processes, e.g. the patterning capabilities of one or a few cell types in cell cultures. Cell-based models can then identify the mechanisms responsible for patterning in...

Modeling Spatial Effects in Early Carcinogenesis : Stochastic Versus Deterministic Reaction-Diffusion Systems

R. Bertolusso, M. Kimmel (2012)

Mathematical Modelling of Natural Phenomena

We consider the early carcinogenesis model originally proposed as a deterministic reaction-diffusion system. The model has been conceived to explore the spatial effects stemming from growth regulation of pre-cancerous cells by diffusing growth factor molecules. The model exhibited Turing instability producing transient spatial spikes in cell density, which might be considered a model counterpart of emerging foci of malignant cells. However, the process...

Modelling of Cancer Growth, Evolution and Invasion: Bridging Scales and Models

A. R.A. Anderson, K. A. Rejniak, P. Gerlee, V. Quaranta (2010)

Mathematical Modelling of Natural Phenomena

Since cancer is a complex phenomenon that incorporates events occurring on different length and time scales, therefore multiscale models are needed if we hope to adequately address cancer specific questions. In this paper we present three different multiscale individual-cell-based models, each motivated by cancer-related problems emerging from each of the spatial scales: extracellular, cellular or subcellular, but also incorporating relevant information from other levels. We apply these hybrid...

Currently displaying 1 – 4 of 4

Page 1