Page 1

Displaying 1 – 1 of 1

Showing per page

PDE models for chemotactic movements: Parabolic, hyperbolic and kinetic

Benoît Perthame (2004)

Applications of Mathematics

Modeling the movement of cells (bacteria, amoeba) is a long standing subject and partial differential equations have been used several times. The most classical and successful system was proposed by Patlak and Keller & Segel and is formed of parabolic or elliptic equations coupled through a drift term. This model exhibits a very deep mathematical structure because smooth solutions exist for small initial norm (in the appropriate space) and blow-up for large norms. This reflects experiments on...

Currently displaying 1 – 1 of 1

Page 1