Page 1

Displaying 1 – 8 of 8

Showing per page

Mathematical and Computational Models in Tumor Immunology

F. Pappalardo, A. Palladini, M. Pennisi, F. Castiglione, S. Motta (2012)

Mathematical Modelling of Natural Phenomena

The immune system is able to protect the host from tumor onset, and immune deficiencies are accompanied by an increased risk of cancer. Immunology is one of the fields in biology where the role of computational and mathematical modeling and analysis were recognized the earliest, beginning from 60s of the last century. We introduce the two most common methods in simulating the competition among the immune system, cancers and tumor immunology strategies:...

Mathematical modeling of antigenicity for HIV dynamics

François Dubois, Hervé V.J. Le Meur, Claude Reiss (2010)

MathematicS In Action

This contribution is devoted to a new model of HIV multiplication motivated by the patent of one of the authors. We take into account the antigenic diversity through what we define “antigenicity”, whether of the virus or of the adapted lymphocytes. We model the interaction of the immune system and the viral strains by two processes. On the one hand, the presence of a given viral quasi-species generates antigenically adapted lymphocytes. On the other hand, the lymphocytes kill only viruses for which...

Modeling the Impact of Anticancer Agents on Metastatic Spreading

S. Benzekry, N. André, A. Benabdallah, J. Ciccolini, C. Faivre, F. Hubert, D. Barbolosi (2012)

Mathematical Modelling of Natural Phenomena

Treating cancer patients with metastatic disease remains an ultimate challenge in clinical oncology. Because invasive cancer precludes or limits the use of surgery, metastatic setting is often associated with (poor) survival, rather than sustained remission, in patients with common cancers like lung, digestive or breast carcinomas. Mathematical modeling may help us better identify non detectable metastatic status to in turn optimize treatment for...

Modelling Tuberculosis and Hepatitis B Co-infections

S. Bowong, J. Kurths (2010)

Mathematical Modelling of Natural Phenomena

Tuberculosis (TB) is the leading cause of death among individuals infected with the hepatitis B virus (HBV). The study of the joint dynamics of HBV and TB present formidable mathematical challenges due to the fact that the models of transmission are quite distinct. We formulate and analyze a deterministic mathematical model which incorporates of the co-dynamics of hepatitis B and tuberculosis. Two sub-models, namely: HBV-only and TB-only sub-models...

Currently displaying 1 – 8 of 8

Page 1