First-passage competition with different speeds: positive density for both species is impossible.
In this paper we prove some fixed point theorems of the Banach and Krasnosel’skii type for mappings on the -tuple Cartesian product of a Banach algebra over . Using these theorems existence results for a system of integral equations of the Gripenberg’s type are proved. A sufficient condition for the nonexistence of blowing-up solutions of this system of integral equations is also proved.
In this study, we present an epidemic model that characterizes the behavior of a financial network of globally operating stock markets. Since the long time series have a global memory effect, we represent our model by using the fractional calculus. This model operates on a network, where vertices are the stock markets and edges are constructed by the correlation distances. Thereafter, we find an analytical solution to commensurate system and use the well-known differential transform method to obtain...