Displaying 41 – 60 of 159

Showing per page

Dynamical behavior of Volterra model with mutual interference concerning IPM

Yujuan Zhang, Bing Liu, Lansun Chen (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

A Volterra model with mutual interference concerning integrated pest management is proposed and analyzed. By using Floquet theorem and small amplitude perturbation method and comparison theorem, we show the existence of a globally asymptotically stable pest-eradication periodic solution. Further, we prove that when the stability of pest-eradication periodic solution is lost, the system is permanent and there exists a locally stable positive periodic solution which arises from the pest-eradication...

Dynamical behavior of Volterra model with mutual interference concerning IPM

Yujuan Zhang, Bing Liu, Lansun Chen (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

A Volterra model with mutual interference concerning integrated pest management is proposed and analyzed. By using Floquet theorem and small amplitude perturbation method and comparison theorem, we show the existence of a globally asymptotically stable pest-eradication periodic solution. Further, we prove that when the stability of pest-eradication periodic solution is lost, the system is permanent and there exists a locally stable positive periodic solution which arises from the pest-eradication...

Ecological modeling and Lagrangian approach

Boris Arkhipov, Viacheslav Solbakov, Mikhail Solov’ev, Dmitry Shapochkin (2013)

Open Mathematics

A mathematical model is proposed for a quantitative estimation of the damage to biological resources resulting from a pollutant discharge into an aqueous environment. On the basis of the Lagrangian description of fluid motion a set of hydrophysical parameters is introduced with help of which hydrobiologists can estimate the damage. The computation of parameters introduced is illustrated by the example of a model problem of a pollutant spreading in a canal. For the discretization of the problem a...

Effects of competition and predation in a three species model

Janusz Szwabiński, Andrzej Pękalski, Kamil Trojan (2008)

Banach Center Publications

A model which consists of a predator and two prey species is presented. The prey compete for the same limited resource (food). The predator preys on both prey species but with different severity. We show that the coexistence of all three species is possible in a mean-field approach, whereas from Monte Carlo simulation it follows that the stochastic fluctuations drive one of the prey populations into extinction.

Enrichment Paradox Induced by Spatial Heterogeneity in a Phytoplankton - Zooplankton System

J.-C. Poggiale, M. Gauduchon, P. Auger (2008)

Mathematical Modelling of Natural Phenomena

This paper is devoted to the study of a predator-prey model in a patchy environment. The model represents the interactions between phytoplankton and zooplankton in the water column. Two patches are considered with respect to light availability: one patch is associated to the surface layer, the second patch describes the bottom layer. We show that this spatial heterogeneity may destabilize the predator-prey system, even in oligotrophic system where the nutrient is low enough to avoid ”paradox-enrichment”...

Existence and global attractivity of positive periodic solutions for a delayed competitive system with the effect of toxic substances and impulses

Changjin Xu, Qianhong Zhang, Maoxin Liao (2013)

Applications of Mathematics

In this paper, a class of non-autonomous delayed competitive systems with the effect of toxic substances and impulses is considered. By using the continuation theorem of coincidence degree theory, we derive a set of easily verifiable sufficient conditions that guarantees the existence of at least one positive periodic solution, and by constructing a suitable Lyapunov functional, the uniqueness and global attractivity of the positive periodic solution are established.

Extinction in nonautonomous Kolmogorov systems

Joanna Pętela (2010)

Applicationes Mathematicae

We consider nonautonomous competitive Kolmogorov systems, which are generalizations of the classical Lotka-Volterra competition model. Applying Ahmad and Lazer's definitions of lower and upper averages of a function, we give an average condition which guarantees that all but one of the species are driven to extinction.

Feeding Threshold for Predators Stabilizes Predator-Prey Systems

D. Bontje, B. W. Kooi, G. A.K. van Voorn, S.A.L.M Kooijman (2009)

Mathematical Modelling of Natural Phenomena

Since Rosenzweig showed the destabilisation of exploited ecosystems, the so called Paradox of enrichment, several mechanisms have been proposed to resolve this paradox. In this paper we will show that a feeding threshold in the functional response for predators feeding on a prey population stabilizes the system and that there exists a minimum threshold value above which the predator-prey system is unconditionally stable with respect to enrichment. Two models are analysed, the first being the classical...

Food Webs, Competition Graphs, and Habitat Formation

M. Cozzens (2011)

Mathematical Modelling of Natural Phenomena

One interesting example of a discrete mathematical model used in biology is a food web. The first biology courses in high school and in college present the fundamental nature of a food web, one that is understandable by students at all levels. But food webs as part of a larger system are often not addressed. This paper presents materials that can be used in undergraduate classes in biology (and mathematics) and provides students with the opportunity...

Fragmentation-Coagulation Models of Phytoplankton

Ryszard Rudnicki, Radosław Wieczorek (2006)

Bulletin of the Polish Academy of Sciences. Mathematics

We present two new models of the dynamics of phytoplankton aggregates. The first one is an individual-based model. Passing to infinity with the number of individuals, we obtain an Eulerian model. This model describes the evolution of the density of the spatial-mass distribution of aggregates. We show the existence and uniqueness of solutions of the evolution equation.

General Laws of Adaptation to Environmental Factors: from Ecological Stress to Financial Crisis

A. N. Gorban, E. V. Smirnova, T. A. Tyukina (2009)

Mathematical Modelling of Natural Phenomena

We study ensembles of similar systems under load of environmental factors. The phenomenon of adaptation has similar properties for systems of different nature. Typically, when the load increases above some threshold, then the adapting systems become more different (variance increases), but the correlation increases too. If the stress continues to increase then the second threshold appears: the correlation achieves maximal value, and start to decrease, but the variance continue to increase. In many...

Currently displaying 41 – 60 of 159