Stability analysis for large scale time delay systems via the matrix Lyapunov function
This paper is concerned with the problem of the exponential stability in mean square moment for neutral stochastic systems with mixed delays, which are composed of the retarded one and the neutral one, respectively. Based on an integral inequality, a delay-dependent stability criterion for such systems is obtained in terms of linear matrix inequality (LMI) to ensure a large upper bounds of the neutral delay and the retarded delay by dividing the neutral delay interval into multiple segments. A new...
This paper considers a three-dimensional energy demand-supply system which typically demonstrates the relationship between the amount of energy supply and that of energy demand for the two regions in China. A delayed feedback controller is proposed to stabilize the system which was originally unstable even under some other controllers. The stability properties of the equilibrium points are subsequently analyzed and it is found that the Hopf bifurcation appears under some conditions. By using the...
In order to better understand the dynamics of acute leukemia, and in particular to find theoretical conditions for the efficient delivery of drugs in acute myeloblastic leukemia, we investigate stability of a system modeling its cell dynamics. The overall system is a cascade connection of sub-systems consisting of distributed delays and static nonlinear feedbacks. Earlier results on local asymptotic stability are improved by the analysis of the linearized...
This paper is devoted to studying the globally exponential stability of impulsive high-order Hopfield-type neural networks with time-varying delays. In the process of impulsive effect, nonlinear and delayed factors are simultaneously considered. A new impulsive differential inequality is derived based on the Lyapunov-Razumikhin method and some novel stability criteria are then given. These conditions, ensuring the global exponential stability, are simpler and less conservative than some of the previous...
In the present paper, some results concerning the continuous dependence of optimal solutions and optimal values on data for an optimal control problem associated with a Goursat-Darboux problem and an integral cost functional are derived.
In this paper, a five-dimensional energy demand-supply system has been considered. On the one hand, we analyze the stability for all of the equilibrium points of the system. For each of equilibrium point, by analyzing the characteristic equation, we show the conditions for the stability or instability using Routh-Hurwitz criterion. Then numerical simulations have been given to illustrate all of cases for the theoretical results. On the other hand, by introducing the phenomenon of time delay, we...
In the paper the concept of a controllable continuous flow in a metric space is introduced as a generalization of a controllable system of differential equations in a Banach space, and various kinds of stability and of boundedness of this flow are defined. Theorems stating necessary and sufficient conditions for particular kinds of stability and boundedness are formulated in terms of Ljapunov functions.
The following time delay system is considered, where may have discontinuities, in particular at the origin. The solution is defined using the “redefined nonlinearity” concept. For such systems sliding modes are discussed and a frequency domain inequality for global asymptotic stability is given.
This paper deals with a class of uncertain systems with time-varying delays and norm-bounded uncertainty. The stability and stabilizability of this class of systems are considered. Linear Matrix Inequalities (LMI) delay-dependent sufficient conditions for both stability and stabilizability and their robustness are established.