Stability and stabilizability of dynamical systems with multiple time-varying delays: Delay-dependent criteria.
We analyze the stability and stabilizability properties of mixed retarded-neutral type systems when the neutral term may be singular. We consider an operator differential equation model of the system in a Hilbert space, and we are interested in the critical case when there is a sequence of eigenvalues with real parts converging to zero. In this case, the system cannot be exponentially stable, and we study conditions under which it will be strongly stable. The behavior of spectra of mixed retarded-neutral...
We analyze the stability and stabilizability properties of mixed retarded-neutral type systems when the neutral term may be singular. We consider an operator differential equation model of the system in a Hilbert space, and we are interested in the critical case when there is a sequence of eigenvalues with real parts converging to zero. In this case, the system cannot be exponentially stable, and we study conditions under which it will be strongly...
We analyze the stability and stabilizability properties of mixed retarded-neutral type systems when the neutral term may be singular. We consider an operator differential equation model of the system in a Hilbert space, and we are interested in the critical case when there is a sequence of eigenvalues with real parts converging to zero. In this case, the system cannot be exponentially stable, and we study conditions under which it will be strongly...
We study stability and stabilizability properties of systems with discontinuous righthand side (with solutions intended in Filippov's sense) by means of locally Lipschitz continuous and regular Lyapunov functions. The stability result is obtained in the more general context of differential inclusions. Concerning stabilizability, we focus on systems affine with respect to the input: we give some sufficient conditions for a system to be stabilized by means of a feedback law of the Jurdjevic-Quinn...
A singularly perturbed linear time-invariant time delay controlled system is considered. The singular perturbations are subject to the presence of two small positive multipliers for some of the derivatives in the system. These multipliers (the parameters of singular perturbations) are of different orders of the smallness. The delay in the slow state variable is non-small (of order of ). The delays in the fast state variables are proportional to the corresponding parameters of singular perturbations....
This paper presents a research effort focused on the problem of robust stability of the closed-loop adaptive system. It is aimed at providing a general framework for the investigation of continuous-time, state-space systems required to track a (stable) reference model. This is motivated by the model reference adaptive control (MRAC) scheme, traditionally considered in such a setting. The application of differential inequlities results to the analysis of the Lyapunov stability for a class of nonlinear...
The paper is concerned with stability analysis for a class of impulsive Hopfield neural networks with Markovian jumping parameters and time-varying delays. The jumping parameters considered here are generated from a continuous-time discrete-state homogenous Markov process. By employing a Lyapunov functional approach, new delay-dependent stochastic stability criteria are obtained in terms of linear matrix inequalities (LMIs). The proposed criteria can be easily checked by using some standard numerical...
Stability of an invariant measure of stochastic differential equation with respect to bounded pertubations of its coefficients is investigated. The results as well as some earlier author's results on Liapunov type stability of the invariant measure are applied to a system describing molecular rotation.
In the paper we study the subject of stability of systems with -differences of Caputo-, Riemann-Liouville- and Grünwald-Letnikov-type with fractional orders. The equivalent descriptions of fractional -difference systems are presented. The sufficient conditions for asymptotic stability are given. Moreover, the Lyapunov direct method is used to analyze the stability of the considered systems with -orders.