Displaying 21 – 40 of 3834

Showing per page

A collector for information without probability in a fuzzy setting

Doretta Vivona, Maria Divari (2005)

Kybernetika

In the fuzzy setting, we define a collector of fuzzy information without probability, which allows us to consider the reliability of the observers. This problem is transformed in a system of functional equations. We give the general solution of that system for collectors which are compatible with composition law of the kind “inf”.

A comparison of Jacobian-based methods of inverse kinematics for serial robot manipulators

Ignacy Dulęba, Michał Opałka (2013)

International Journal of Applied Mathematics and Computer Science

The objective of this paper is to present and make a comparative study of several inverse kinematics methods for serial manipulators, based on the Jacobian matrix. Besides the well-known Jacobian transpose and Jacobian pseudo-inverse methods, three others, borrowed from numerical analysis, are presented. Among them, two approximation methods avoid the explicit manipulability matrix inversion, while the third one is a slightly modified version of the Levenberg-Marquardt method (mLM). Their comparison...

A comparison of two FEM-based methods for the solution of the nonlinear output regulation problem

Branislav Rehák, Sergej Čelikovský, Javier Ruiz, Jorge Orozco-Mora (2009)

Kybernetika

The regulator equation is the fundamental equation whose solution must be found in order to solve the output regulation problem. It is a system of first-order partial differential equations (PDE) combined with an algebraic equation. The classical approach to its solution is to use the Taylor series with undetermined coefficients. In this contribution, another path is followed: the equation is solved using the finite-element method which is, nevertheless, suitable to solve PDE part only. This paper...

A constructive method for solving stabilization problems

Vadim Azhmyakov (2000)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

The problem of asymptotic stabilization for a class of differential inclusions is considered. The problem of choosing the Lyapunov functions from the parametric class of polynomials for differential inclusions is reduced to that of searching saddle points of a suitable function. A numerical algorithm is used for this purpose. All the results thus obtained can be extended to cover the discrete systems described by difference inclusions.

A consumption-investment problem modelled as a discounted Markov decision process

Hugo Cruz-Suárez, Raúl Montes-de-Oca, Gabriel Zacarías (2011)

Kybernetika

In this paper a problem of consumption and investment is presented as a model of a discounted Markov decision process with discrete-time. In this problem, it is assumed that the wealth is affected by a production function. This assumption gives the investor a chance to increase his wealth before the investment. For the solution of the problem there is established a suitable version of the Euler Equation (EE) which characterizes its optimal policy completely, that is, there are provided conditions...

A continuation method for motion-planning problems

Yacine Chitour (2006)

ESAIM: Control, Optimisation and Calculus of Variations

We apply the well-known homotopy continuation method to address the motion planning problem (MPP) for smooth driftless control-affine systems. The homotopy continuation method is a Newton-type procedure to effectively determine functions only defined implicitly. That approach requires first to characterize the singularities of a surjective map and next to prove global existence for the solution of an ordinary differential equation, the Wazewski equation. In the context of the MPP, the aforementioned...

A continuation method for motion-planning problems

Yacine Chitour (2005)

ESAIM: Control, Optimisation and Calculus of Variations

We apply the well-known homotopy continuation method to address the motion planning problem (MPP) for smooth driftless control-affine systems. The homotopy continuation method is a Newton-type procedure to effectively determine functions only defined implicitly. That approach requires first to characterize the singularities of a surjective map and next to prove global existence for the solution of an ordinary differential equation, the Wazewski equation. In the context of the MPP, the aforementioned...

A Cost-Effectiveness-Assessing Model of Vaccination for Varicella and Zoster

M. Comba, S. Martorano-Raimundo, E. Venturino (2012)

Mathematical Modelling of Natural Phenomena

A decision analytical model is presented and analysed to assess the effectiveness and cost-effectiveness of routine vaccination against varicella and herpes-zoster, or shingles. These diseases have as common aetiological agent the varicella-zoster virus (VZV). Zoster can more likely occur in aged people with declining cell-mediated immunity. The general concern is that universal varicella vaccination might lead to more cases of zoster: with more...

Currently displaying 21 – 40 of 3834