Emergency control of unstable behavior of nonlinear systems induced by fault.
Supervised learning methods are powerful techniques to learn a function from a given set of labeled data, the so-called training data. In this paper the support vector machines approach is applied to an image classification task. Starting with the corresponding Tikhonov regularization problem, reformulated as a convex optimization problem, we introduce a conjugate dual problem to it and prove that, whenever strong duality holds, the function to be learned can be expressed via the dual optimal solutions....
The problem of transient hysteresis cycles induced by the pre-sliding kinetic friction is relevant for analyzing the system dynamics, e.g., of micro- and nano-positioning instruments and devices and their controlled operation. The associated energy dissipation and consequent convergence of the state trajectories occur due to the structural hysteresis damping of contact surface asperities during reversals, and it is neither exponential (i.e., viscous type) nor finite-time (i.e., Coulomb type). In...
This work concerns an enlarged analysis of the problem of asymptotic compensation for a class of discrete linear distributed systems. We study the possibility of asymptotic compensation of a disturbance by bringing asymptotically the observation in a given tolerance zone 𝒞. Under convenient hypothesis, we show the existence and the unicity of the optimal control ensuring this compensation and we give its characterization
In this work, we examine, through the observation of a class of linear distributed systems, the possibility of reducing the effect of disturbances (pollution, etc.), by making observations within a given margin of tolerance using a control term. This problem is called enlarged exact remediability. We show that with a convenient choice of input and output operators (actuators and sensors, respectively), the considered control problem has a unique optimal solution, which will be given. We also study...
The paper presents an improved method for 1-24 hours load forecasting in the power system, integrating and combining different neural forecasting results by an ensemble system. We will integrate the results of partial predictions made by three solutions, out of which one relies on a multilayer perceptron and two others on self-organizing networks of the competitive type. As the expert system we will apply different integration methods: simple averaging, SVD based weighted averaging, principal component...
In many markets, especially in energy markets, electricity markets for instance, the detention of the physical asset is quite difficult. This is also the case for crude oil as treated by Davis (2000). So one can identify a good proxy which is an asset (financial or physical) (one)whose the spot price is significantly correlated with the spot price of the underlying (e.g. electicity or crude oil). Generally, the market could become incomplete. We explicit exact hedging strategies for exponential...
In this article, a new class of the epoch-incremental reinforcement learning algorithm is proposed. In the incremental mode, the fundamental TD(0) or TD(λ) algorithm is performed and an environment model is created. In the epoch mode, on the basis of the environment model, the distances of past-active states to the terminal state are computed. These distances and the reinforcement terminal state signal are used to improve the agent policy.
The structure of solution-sets for the equation is discussed, where are given residuated functions mapping between partially-ordered sets. An algorithm is proposed which produces a solution in the event of finite termination: this solution is maximal relative to initial trial values of . Properties are defined which are sufficient for finite termination. The particular case of max-based linear algebra is discussed, with application to the synchronisation problem for discrete-event systems;...
A new direct method is presented which reduces a given high-order representation of a control system with delays to a first-order form that is encountered in the study of neutral delay-differential systems. Using the polynomial system description (PMD) setting due to Rosenbrock, it is shown that the transformation connecting the original PMD with the first-order form is Fuhrmann's strict system equivalence. This type of system equivalence leaves the transfer function and other relevant structural...