Displaying 61 – 80 of 395

Showing per page

Automatic control of mechatronic systems

Kurt Schlacher, Andreas Kugi (2001)

International Journal of Applied Mathematics and Computer Science

This contribution deals with different concepts of nonlinear control for mechatronic systems. Since most physical systems are nonlinear in nature, it is quite obvious that an improvement in the performance of the closed loop can often be achieved only by means of control techniques that take the essential nonlinearities into consideration. Nevertheless, it can be observed that industry often hesitates to implement these nonlinear controllers, despite all advantages existing from the theoretical...

Automatic risk control based on FSA methodology adaptation for safety assessment in intelligent buildings

Jerzy Mikulik, Mirosław Zajdel (2009)

International Journal of Applied Mathematics and Computer Science

The main area which Formal Safety Assessment (FSA) methodology was created for is maritime safety. Its model presents quantitative risk estimation and takes detailed information about accident characteristics into account. Nowadays, it is broadly used in shipping navigation around the world. It has already been shown that FSA can be widely used for the assessment of pilotage safety. On the basis of analysis and conclusion on the FSA approach, this paper attempts to show that the adaptation of this...

Behavioral systems theory: A survey

Eva Zerz (2008)

International Journal of Applied Mathematics and Computer Science

We survey the so-called behavioral approach to systems and control theory, which was founded by J. C. Willems and his school. The central idea of behavioral systems theory is to put the focus on the set of trajectories of a dynamical system rather than on a specific set of equations modelling the underlying phenomenon. Moreover, all signal components are treated on an equal footing at first, and their partition into inputs and outputs is derived from the system law, in a way that admits several...

Block-based physical modeling with applications in musical acoustics

Rudolf Rabenstein, Stefan Petrausch (2008)

International Journal of Applied Mathematics and Computer Science

Block-based physical modeling is a methodology for modeling physical systems with different subsystems. Each subsystem may be modeled according to a different paradigm. Connecting systems of diverse nature in the discrete-time domain requires a unified interconnection strategy. Such a strategy is provided by the well-known wave digital principle, which had been introduced initially for the design of digital filters. It serves as a starting point for the more general idea of blockbased physical modeling,...

Boolean Biology: Introducing Boolean Networks and Finite Dynamical Systems Models to Biology and Mathematics Courses

R. Robeva, B. Kirkwood, R. Davies (2011)

Mathematical Modelling of Natural Phenomena

Since the release of the Bio 2010 report in 2003, significant emphasis has been placed on initiating changes in the way undergraduate biology and mathematics courses are taught and on creating new educational materials to facilitate those changes. Quantitative approaches, including mathematical models, are now considered critical for the education of the next generation of biologists. In response, mathematics departments across the country have initiated changes to their introductory calculus sequence,...

Bottom-up learning of hierarchical models in a class of deterministic POMDP environments

Hideaki Itoh, Hisao Fukumoto, Hiroshi Wakuya, Tatsuya Furukawa (2015)

International Journal of Applied Mathematics and Computer Science

The theory of partially observable Markov decision processes (POMDPs) is a useful tool for developing various intelligent agents, and learning hierarchical POMDP models is one of the key approaches for building such agents when the environments of the agents are unknown and large. To learn hierarchical models, bottom-up learning methods in which learning takes place in a layer-by-layer manner from the lowest to the highest layer are already extensively used in some research fields such as hidden...

Building Mathematical Models and Biological Insight in an Introductory Biology Course

A. E. Weisstein (2011)

Mathematical Modelling of Natural Phenomena

A growing body of literature testifies to the importance of quantitative reasoning skills in the 21st-century biology curriculum, and to the learning benefits associated with active pedagogies. The process of modeling a biological system provides an approach that integrates mathematical skills and higher-order thinking with existing course content knowledge. We describe a general strategy for teaching model-building in an introductory biology course,...

Compartmental Models of Migratory Dynamics

J. Knisley, T. Schmickl, I. Karsai (2011)

Mathematical Modelling of Natural Phenomena

Compartmentalization is a general principle in biological systems which is observable on all size scales, ranging from organelles inside of cells, cells in histology, and up to the level of groups, herds, swarms, meta-populations, and populations. Compartmental models are often used to model such phenomena, but such models can be both highly nonlinear and difficult to work with.Fortunately, there are many significant biological systems that are amenable to linear compartmental models which are often...

Complementary matrices in the inclusion principle for dynamic controllers

Lubomír Bakule, José Rodellar, Josep M. Rossell (2003)

Kybernetika

A generalized structure of complementary matrices involved in the input-state- output Inclusion Principle for linear time-invariant systems (LTI) including contractibility conditions for static state feedback controllers is well known. In this paper, it is shown how to further extend this structure in a systematic way when considering contractibility of dynamic controllers. Necessary and sufficient conditions for contractibility are proved in terms of both unstructured and block structured complementary...

Condiciones algebraicas de existencia y estabilidad para el diseño de controladores para sistemas lineales multivariables interconectados.

Manuel de la Sen (1986)

Stochastica

This paper presents an algebraic design theory for interconnected systems. Usual multivariable linear systems are described in a unified way. Both square and nonsquare plants and controllers are included in the study and an easy characterization of the achievable I/O (input-to-output) and D/O (disturbance-to-output) maps is presented through the use of appropriate controllers. Sufficient conditions of stability are given.

Confidence and self-confidence: Perceived and real

David Pearson (2002)

International Journal of Applied Mathematics and Computer Science

The problem of modelling the dynamics of confidence levels between two individuals is investigated. A model, based on a master equation approach, is developed and presented. An important feature of the model is that self-confidence is modelled along with its interaction with confidence towards others. Simulation results are presented.

Currently displaying 61 – 80 of 395